def MEAN_Spot(opt): # channel 1 inputs1 = layers.Input(shape=(42,42,1)) conv1 = layers.Conv2D(3, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs1) bn1 = layers.BatchNormalization()(conv1) pool1 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn1) do1 = layers.Dropout(0.3)(pool1) # channel 2 inputs2 = layers.Input(shape=(42,42,1)) conv2 = layers.Conv2D(3, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs2) bn2 = layers.BatchNormalization()(conv2) pool2 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn2) do2 = layers.Dropout(0.3)(pool2) # channel 3 inputs3 = layers.Input(shape=(42,42,1)) conv3 = layers.Conv2D(8, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs3) bn3 = layers.BatchNormalization()(conv3) pool3 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn3) do3 = layers.Dropout(0.3)(pool3) # merge 1 merged = layers.Concatenate()([do1, do2, do3]) # interpretation 1 merged_conv = layers.Conv2D(8, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.1))(merged) merged_pool = layers.MaxPooling2D(pool_size=(2, 2), padding='same', strides=(2,2))(merged_conv) flat = layers.Flatten()(merged_pool) flat_do = layers.Dropout(0.2)(flat) # outputs outputs = layers.Dense(1, activation='linear', name='spot')(flat_do) #Takes input u, v, os model = keras.models.Model(inputs=[inputs1, inputs2, inputs3], outputs=[outputs]) model.compile( loss={'spot':'mse'}, optimizer=opt, metrics={'spot':tf.keras.metrics.MeanAbsoluteError()}, ) return model 如何将特征图合并处理并且加入通道注意力和空间注意力模块
时间: 2023-09-15 15:21:34 浏览: 99
要实现特征图的通道注意力和空间注意力模块,可以按照以下步骤进行:
1. 在合并特征图后,使用全局平均池化层(Global Average Pooling)对每个通道进行压缩,得到每个通道的全局特征向量。
2. 对每个通道的全局特征向量进行通道注意力加权,可以使用全连接层或者一维卷积层实现,得到每个通道的权重。
3. 将每个通道的权重乘以该通道的特征图,得到加权后的特征图。
4. 对加权后的特征图,使用空间注意力模块进行空间加权,可以使用二维卷积层或者注意力机制实现,得到最终的特征图。
代码实现可以参考以下示例:
```python
from tensorflow.keras import layers
def channel_attention(input_tensor, reduction_ratio=8):
# 全局平均池化
channel_avg = layers.GlobalAveragePooling2D()(input_tensor)
# 通道注意力加权
channel_dense1 = layers.Dense(units=input_tensor.shape[-1] // reduction_ratio, activation='relu')(channel_avg)
channel_dense2 = layers.Dense(units=input_tensor.shape[-1], activation='sigmoid')(channel_dense1)
channel_attention = layers.Reshape(target_shape=(1, 1, input_tensor.shape[-1]))(channel_dense2)
return layers.multiply([input_tensor, channel_attention])
def spatial_attention(input_tensor):
# 空间注意力加权
spatial_conv1 = layers.Conv2D(filters=1, kernel_size=(7, 7), padding='same', activation='sigmoid')(input_tensor)
spatial_attention = layers.multiply([input_tensor, spatial_conv1])
return spatial_attention
def merge_attention(features):
# 合并三个特征图
merged = layers.Concatenate()(features)
# 通道注意力
merged_ca = channel_attention(merged)
# 空间注意力
merged_sa = spatial_attention(merged_ca)
return merged_sa
```
在原有的模型中,使用`merge_attention`函数对特征图进行加权合并即可:`merged = merge_attention([do1, do2, do3])`。
阅读全文