利用pytorch框架设计基于DPN92模型的图像检测与分类输出坐标、大小和种类

时间: 2023-06-10 20:06:59 浏览: 53
首先,我们需要安装PyTorch和其他必要的库。可以使用以下命令安装PyTorch: ``` pip install torch torchvision ``` 其他库可以使用以下命令安装: ``` pip install numpy pandas matplotlib opencv-python ``` 接下来,我们需要下载DPN92预训练模型的权重。可以使用以下命令下载: ``` wget https://github.com/c0nn3r/DPN/releases/download/v2.0/DPN92_extra_5k.pth.tar ``` 现在开始设计模型。我们将使用PyTorch中的预训练模型和自定义头来实现图像检测和分类。以下是完整的代码: ```python import torch import torch.nn as nn import torch.nn.functional as F import torchvision.transforms as transforms import cv2 import numpy as np # Define the custom head for object detection class DetectionHead(nn.Module): def __init__(self, in_channels, num_classes): super(DetectionHead, self).__init__() self.conv1 = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) self.bn1 = nn.BatchNorm2d(in_channels) self.conv2 = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) self.bn2 = nn.BatchNorm2d(in_channels) self.conv3 = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) self.bn3 = nn.BatchNorm2d(in_channels) self.conv4 = nn.Conv2d(in_channels, num_classes * 5, kernel_size=3, stride=1, padding=1) def forward(self, x): x = F.relu(self.bn1(self.conv1(x))) x = F.relu(self.bn2(self.conv2(x))) x = F.relu(self.bn3(self.conv3(x))) x = self.conv4(x) return x # Define the model class DPN92Detection(nn.Module): def __init__(self, num_classes): super(DPN92Detection, self).__init__() self.dpn92 = torch.hub.load('rwightman/pytorch-dpn-pretrained', 'dpn92', pretrained=True) self.head = DetectionHead(2688, num_classes) def forward(self, x): x = self.dpn92.features(x) x = F.avg_pool2d(x, kernel_size=7, stride=1) x = x.view(x.size(0), -1) x = self.head(x) return x # Define the class names class_names = ['class0', 'class1', 'class2', 'class3', 'class4'] # Load the model and the weights model = DPN92Detection(num_classes=len(class_names)) model.load_state_dict(torch.load('DPN92_extra_5k.pth.tar', map_location='cpu')['state_dict']) # Set the model to evaluation mode model.eval() # Define the image transformer image_transforms = transforms.Compose([ transforms.ToPILImage(), transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ]) # Load the image image = cv2.imread('test.jpg') # Transform the image input_image = image_transforms(image) input_image = input_image.unsqueeze(0) # Make a prediction with torch.no_grad(): output = model(input_image) # Get the class probabilities class_probs = F.softmax(output[:, :len(class_names)], dim=1) # Get the bounding box coordinates, sizes and class indices coords_sizes_classes = output[:, len(class_names):].view(-1, 5) coords_sizes_classes[:, :2] = torch.sigmoid(coords_sizes_classes[:, :2]) coords_sizes_classes[:, 2] = torch.exp(coords_sizes_classes[:, 2]) coords_sizes_classes[:, 3:5] = torch.argmax(coords_sizes_classes[:, 3:], dim=1).unsqueeze(1) coords_sizes_classes = coords_sizes_classes.cpu().numpy() # Filter out the boxes with low confidence conf_threshold = 0.5 filtered_boxes = coords_sizes_classes[class_probs[0] > conf_threshold] # Draw the boxes on the image for box in filtered_boxes: x, y, w, h, c = box x *= image.shape[1] y *= image.shape[0] w *= image.shape[1] h *= image.shape[0] x1 = int(x - w / 2) y1 = int(y - h / 2) x2 = int(x + w / 2) y2 = int(y + h / 2) cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2) cv2.putText(image, class_names[int(c)], (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2) # Show the image cv2.imshow('Image', image) cv2.waitKey(0) cv2.destroyAllWindows() ``` 在上面的代码中,我们定义了一个名为`DetectionHead`的自定义头,用于检测图像中的对象,并输出它们的坐标、大小和类别。然后,我们定义了一个名为`DPN92Detection`的模型,该模型使用DPN92预训练模型和自定义头进行图像检测和分类。我们还定义了一些变量,如类名、图像变换器、置信度阈值等。最后,我们将模型和权重加载到内存中,并使用`cv2`库加载图像。我们将图像传递给模型,然后使用`softmax`函数获取类别概率,使用`sigmoid`和`exp`函数获取边界框的坐标和大小,并使用`argmax`函数获取类别索引。最后,我们过滤掉低置信度的边界框,并将它们绘制在原始图像上。

相关推荐

import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable class Bottleneck(nn.Module): def init(self, last_planes, in_planes, out_planes, dense_depth, stride, first_layer): super(Bottleneck, self).init() self.out_planes = out_planes self.dense_depth = dense_depth self.conv1 = nn.Conv2d(last_planes, in_planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(in_planes) self.conv2 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=32, bias=False) self.bn2 = nn.BatchNorm2d(in_planes) self.conv3 = nn.Conv2d(in_planes, out_planes+dense_depth, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(out_planes+dense_depth) self.shortcut = nn.Sequential() if first_layer: self.shortcut = nn.Sequential( nn.Conv2d(last_planes, out_planes+dense_depth, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_planes+dense_depth) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) x = self.shortcut(x) d = self.out_planes out = torch.cat([x[:,:d,:,:]+out[:,:d,:,:], x[:,d:,:,:], out[:,d:,:,:]], 1) out = F.relu(out) return out class DPN(nn.Module): def init(self, cfg): super(DPN, self).init() in_planes, out_planes = cfg['in_planes'], cfg['out_planes'] num_blocks, dense_depth = cfg['num_blocks'], cfg['dense_depth'] self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.last_planes = 64 self.layer1 = self._make_layer(in_planes[0], out_planes[0], num_blocks[0], dense_depth[0], stride=1) self.layer2 = self._make_layer(in_planes[1], out_planes[1], num_blocks[1], dense_depth[1], stride=2) self.layer3 = self._make_layer(in_planes[2], out_planes[2], num_blocks[2], dense_depth[2], stride=2) self.layer4 = self._make_layer(in_planes[3], out_planes[3], num_blocks[3], dense_depth[3], stride=2) self.linear = nn.Linear(out_planes[3]+(num_blocks[3]+1)dense_depth[3], 10) def _make_layer(self, in_planes, out_planes, num_blocks, dense_depth, stride): strides = [stride] + 1 layers = [] for i,stride in (strides): layers.append(Bottleneck(self.last_planes, in_planes, out_planes, dense_depth, stride, i==0)) self.last_planes = out_planes + (i+2) * dense_depth return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out def DPN92(): cfg = { 'in_planes': (96,192,384,768), 'out_planes': (256,512,1024,2048), 'num_blocks': (3,4,20,3), 'dense_depth': (16,32,24,128) } return DPN(cfg)基于这个程序利用pytorch框架修改成对摄像头采集的图像检测与分类输出坐标、大小和种类

最新推荐

recommend-type

Pytorch 使用CNN图像分类的实现

在4*4的图片中,比较外围黑色像素点和内圈黑色像素点个数的大小将图片分类 如上图图片外围黑色像素点5个大于内圈黑色像素点1个分为0类反之1类 想法 通过numpy、PIL构造4*4的图像数据集 构造自己的数据集类 读取...
recommend-type

使用PyTorch训练一个图像分类器实例

今天小编就为大家分享一篇使用PyTorch训练一个图像分类器实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

PyTorch上搭建简单神经网络实现回归和分类的示例

本篇文章主要介绍了PyTorch上搭建简单神经网络实现回归和分类的示例,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
recommend-type

基于 VGG19 的图像风格迁移研究

利用 VGG-19 神经网络 模型,结合人工智能开源框架 Pytorch 设计快速图像风格迁移算法。实验表明, 采用 VGG-19 神经网络模型的图像风格迁移技术,生成了具有高感知质量的新图 像,将任意照片的内容与众多著名艺术品...
recommend-type

pytorch 实现数据增强分类 albumentations的使用

albumentations包是一种针对数据增强专门写的API,里面基本包含大量的数据增强手段,比起pytorch自带的ttransform更丰富,搭配使用效果更好。 代码和效果 import albumentations import cv2 from PIL import Image, ...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SPDK_NVMF_DISCOVERY_NQN是什么 有什么作用

SPDK_NVMF_DISCOVERY_NQN 是 SPDK (Storage Performance Development Kit) 中用于查询 NVMf (Non-Volatile Memory express over Fabrics) 存储设备名称的协议。NVMf 是一种基于网络的存储协议,可用于连接远程非易失性内存存储器。 SPDK_NVMF_DISCOVERY_NQN 的作用是让存储应用程序能够通过 SPDK 查询 NVMf 存储设备的名称,以便能够访问这些存储设备。通过查询 NVMf 存储设备名称,存储应用程序可以获取必要的信息,例如存储设备的IP地址、端口号、名称等,以便能
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。