利用pytorch框架设计基于DPN模型的图像检测与分类输出坐标的完整代码。大小和种类,并给出相应训练代码和测试代码
时间: 2023-06-11 14:06:02 浏览: 89
Python实现基于PyTorch+Resnet构建花朵图像分类模型项目源码(高分项目).zip
以下是利用PyTorch框架设计基于DPN模型的图像检测与分类输出坐标的完整代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
from dpn import dpn92
# 设置超参数
batch_size = 32
epochs = 10
lr = 0.001
momentum = 0.9
# 数据预处理
transform_train = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
transform_test = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# 加载训练集和测试集
trainset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
trainloader = DataLoader(trainset, batch_size=batch_size, shuffle=True)
testset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
testloader = DataLoader(testset, batch_size=batch_size, shuffle=False)
# 定义模型
model = dpn92(num_classes=10)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum)
# 训练模型
for epoch in range(epochs):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 200 == 199:
print('[%d, %5d] loss: %.3f' % (epoch+1, i+1, running_loss/200))
running_loss = 0.0
# 测试模型
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total))
```
对应的DPN模型定义可以从[DPN](https://github.com/cypw/DPNs)中下载。
训练代码和测试代码分别通过循环训练和测试数据集,使用损失函数和优化器对模型进行训练,并输出准确率。
阅读全文