kmeans聚类算法python代码
时间: 2023-05-04 09:03:03 浏览: 161
K-Means聚类算法是一种常用的机器学习算法,它可以将数据集分成多个簇,每个簇内的数据具有相似的特征。Python中的scikit-learn库提供了K-Means聚类算法的实现。
下面是K-Means聚类算法的Python代码:
```python
from sklearn.cluster import KMeans
import numpy as np
# 生成数据集
X = np.random.rand(100, 2)
# 定义K-Means聚类算法
kmeans = KMeans(n_clusters=3, random_state=0)
# 训练模型
kmeans.fit(X)
# 预测结果
labels = kmeans.predict(X)
```
以上代码首先生成了一个大小为100x2的随机数据集X。然后通过sklearn库中的KMeans类定义了一个K-Means聚类算法,其中n_clusters参数指定了需要分成几个簇,random_state参数指定了随机数种子,用于固定随机生成的结果。接着用fit方法训练模型,并利用predict方法得到预测结果。
通过以上代码,Python就可以轻松地实现K-Means聚类算法,用于数据集的聚类分析。当然,还可以通过调整参数和画图等手段来优化算法效果。
相关问题
KMEANS聚类算法python代码
K-means聚类算法的Python代码可以使用sklearn库中的KMeans类来实现。下面是一个例子:
```
from sklearn.cluster import KMeans
import numpy as np
# 定义要聚类的数据
X = np.array([[1, 2], [1, 4], [1, 0], [10, 2], [10, 4], [10, 0]])
# 创建KMeans对象并进行拟合
kmeans = KMeans(n_clusters=2, random_state=0).fit(X)
# 获取每个点所属的簇
labels = kmeans.labels_
# 预测新的数据所属的簇
new_data = np.array([[0, 0], [12, 3]])
predictions = kmeans.predict(new_data)
# 获取每个簇的中心
centers = kmeans.cluster_centers_
# 打印结果
print("每个点所属的簇:", labels)
print("预测结果:", predictions)
print("每个簇的中心:", centers)
```
在这个例子中,我们首先导入了`KMeans`类和`numpy`库。然后定义了一个二维数组`X`作为要聚类的数据。接下来,创建了一个`KMeans`对象并使用`fit`方法对数据进行拟合。我们可以使用`labels_`属性获取每个点所属的簇,使用`predict`方法预测新的数据所属的簇,使用`cluster_centers_`属性获取每个簇的中心。最后,我们打印出结果。
注意,这个例子是一个简化版的示例,实际应用中可能需要根据具体需求进行调整。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [K-means聚类算法原理及python实现](https://blog.csdn.net/qq_43741312/article/details/97128745)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
- *2* *3* [Python实现聚类K-means算法](https://blog.csdn.net/wyn1564464568/article/details/125782286)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
pso优化kmeans聚类算法python代码
PSO优化KMeans聚类算法是一种基于粒子群优化算法改进的聚类算法,它通过优化KMeans聚类算法中的初始质心来提高聚类效果。以下是Python实现代码:
```python
import numpy as np
from sklearn.cluster import KMeans
class PSO_KMeans():
def __init__(self, n_clusters, n_particles, n_iterations):
self.n_clusters = n_clusters
self.n_particles = n_particles
self.n_iterations = n_iterations
def fit(self, X):
self.swarm_pos = np.random.uniform(low=X.min(axis=0), high=X.max(axis=0), size=(self.n_particles, X.shape, self.n_clusters))
self.swarm_vel = np.zeros_like(self.swarm_pos)
for i in range(self.n_iterations):
# 计算每个粒子的适应度值
fitness = np.zeros((self.n_particles,))
for j in range(self.n_particles):
kmeans = KMeans(n_clusters=self.n_clusters, init=self.swarm_pos[j])
kmeans.fit(X)
fitness[j] = -kmeans.score(X)
# 更新全局最优解和局部最优解
if i == 0:
self.global_best_pos = self.swarm_pos[np.argmin(fitness)]
self.global_best_fitness = np.min(fitness)
self.local_best_pos = self.swarm_pos.copy()
self.local_best_fitness = fitness.copy()
else:
mask = fitness < self.local_best_fitness
self.local_best_pos[mask] = self.swarm_pos[mask]
self.local_best_fitness[mask] = fitness[mask]
if np.min(fitness) < self.global_best_fitness:
self.global_best_pos = self.swarm_pos[np.argmin(fitness)]
self.global_best_fitness = np.min(fitness)
# 更新粒子速度和位置
r1, r2 = np.random.rand(self.n_particles, X.shape, self.n_clusters), np.random.rand(self.n_particles, X.shape, self.n_clusters)
self.swarm_vel = 0.5 * self.swarm_vel + 1 * r1 * (self.local_best_pos - self.swarm_pos) + 1 * r2 * (self.global_best_pos - self.swarm_pos)
self.swarm_pos += self.swarm_vel
# 训练完毕后,使用全局最优解进行聚类
kmeans = KMeans(n_clusters=self.n_clusters, init=self.global_best_pos)
kmeans.fit(X)
self.labels_ = kmeans.labels_
self.cluster_centers_ = kmeans.cluster_centers_
pso_kmeans = PSO_KMeans(n_clusters=3, n_particles=50, n_iterations=100)
pso_kmeans.fit(X)
labels = pso_kmeans.labels_
cluster_centers = pso_kmeans.cluster_centers_
```
阅读全文
相关推荐















