机器学习kmeans聚类算法python代码
时间: 2024-09-26 10:00:40 浏览: 52
KMeans聚类算法+代码
5星 · 资源好评率100%
K-Means是一种常用的无监督机器学习算法,用于数据集的分群。下面是一个简单的Python代码示例,使用sklearn库实现KMeans聚类:
```python
from sklearn.cluster import KMeans
import numpy as np
# 假设我们有一个二维的数据集data
data = [[5, 8], [1, 2], [9, 4], [6, 7], [3, 3]] # 这里只是一个简化版的数据,实际应用中数据应从文件、数据库或CSV等读取
# 初始化KMeans模型,设定簇的数量n_clusters
kmeans = KMeans(n_clusters=3)
# 对数据进行拟合
kmeans.fit(data)
# 获取每个样本所属的簇标签
labels = kmeans.labels_
# 获取各个簇的质心(中心点)
centroids = kmeans.cluster_centers_
print("Cluster labels:", labels)
print("Centroids:", centroids)
```
在这个例子中,`fit`函数训练模型,`labels_`属性返回的是每个样本分配到的簇标签,`cluster_centers_`属性则返回了每个簇的中心点。
阅读全文