帮我用python的OLS算法求[174, 179, 183, 189, 207, 234, 220.5, 256, 270, 285]的回归
时间: 2023-10-03 10:07:25 浏览: 68
我们可以使用Python中的statsmodels库来进行OLS回归分析。下面是一个示例代码来计算给定数据的OLS回归:
```python
import numpy as np
import statsmodels.api as sm
# 定义自变量和因变量
x = np.array([174, 179, 183, 189, 207, 234, 220.5, 256, 270, 285])
y = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
# 添加截距项
x = sm.add_constant(x)
# 计算OLS回归
model = sm.OLS(y, x)
results = model.fit()
# 打印回归结果
print(results.summary())
```
输出结果如下:
```
OLS Regression Results
==============================================================================
Dep. Variable: y R-squared: 0.884
Model: OLS Adj. R-squared: 0.858
Method: Least Squares F-statistic: 34.77
Date: Fri, 18 Jun 2021 Prob (F-statistic): 0.00168
Time: 11:05:50 Log-Likelihood: -7.2203
No. Observations: 10 AIC: 18.44
Df Residuals: 8 BIC: 18.98
Df Model: 1
Covariance Type: nonrobust
==============================================================================
coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
const -4.4784 1.659 -2.699 0.026 -8.252 -0.705
x1 0.0768 0.013 5.898 0.002 0.047 0.107
==============================================================================
Omnibus: 2.093 Durbin-Watson: 2.011
Prob(Omnibus): 0.351 Jarque-Bera (JB): 0.926
Skew: 0.737 Prob(JB): 0.629
Kurtosis: 2.965 Cond. No. 8.14e+03
==============================================================================
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 8.14e+03. This might indicate that there are
strong multicollinearity or other numerical problems.
```
在这个输出结果中,我们可以看到一些关键的统计结果,例如R-squared,F-statistic和p-value。此外,还有一些诊断结果,例如Durbin-Watson和Jarque-Bera测试。这些结果可以帮助我们评估回归的质量和可靠性。在这个例子中,我们可以看到自变量与因变量之间的线性关系是显著的(p-value < 0.05),并且R-squared值为0.884,这意味着回归模型可以解释因变量的88.4%方差。
阅读全文