Matlab 实现绝对误差和模板匹配算法
时间: 2024-01-03 21:43:34 浏览: 144
1. 绝对误差:
绝对误差是指预测值与真实值之间的差值的绝对值。在Matlab中,可以使用abs()函数来计算绝对值。例如,下面的代码计算两个向量之间的绝对误差:
```matlab
x = [1, 2, 3, 4];
y = [1.5, 2.5, 3.5, 4.5];
abs_error = abs(x - y);
```
2. 模板匹配:
模板匹配是一种图像处理技术,用于在一个大的图像中寻找一个小的图像。在Matlab中,可以使用normxcorr2()函数来实现模板匹配。该函数计算两个矩阵之间的归一化互相关。下面的代码演示了如何使用normxcorr2()函数进行模板匹配:
```matlab
% 加载图像和模板
image = imread('image.jpg');
template = imread('template.jpg');
% 计算归一化互相关
corr_map = normxcorr2(template, image);
% 显示匹配结果
figure, surf(corr_map), shading flat
% 找到最大相关值的位置
[max_corr, max_index] = max(corr_map(:));
[y, x] = ind2sub(size(corr_map), max_index);
% 在原始图像中绘制矩形框
figure, imshow(image), hold on
rectangle('Position', [x-size(template,2)/2, y-size(template,1)/2, size(template,2), size(template,1)], 'EdgeColor', 'g', 'LineWidth', 2);
```
阅读全文
相关推荐


















