写一段pytorch画random state图的代码
时间: 2024-02-10 07:10:44 浏览: 148
好的,下面是一段使用 PyTorch 生成随机数据并绘制散点图的代码:
```python
import torch
import matplotlib.pyplot as plt
# 生成随机数据
x = torch.randn(100)
y = torch.randn(100)
# 绘制散点图
plt.scatter(x, y)
plt.show()
```
这段代码中,我们首先使用 PyTorch 的 `randn` 函数生成了两个长度为 100 的随机张量 `x` 和 `y`,然后使用 Matplotlib 的 `scatter` 函数绘制了它们的散点图,并调用 `show` 函数显示图像。你可以根据自己的需求修改数据的维度、形状和范围等参数。
相关问题
dqn pytorch代码
DQN(Deep Q-Network)是一种基于深度学习的强化学习算法,用于解决离散动作空间的问题。下面是一个简单的DQN PyTorch代码的介绍:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
# 定义DQN网络
class DQN(nn.Module):
def __init__(self, input_dim, output_dim):
super(DQN, self).__init__()
self.fc1 = nn.Linear(input_dim, 64)
self.fc2 = nn.Linear(64, 64)
self.fc3 = nn.Linear(64, output_dim)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
# 定义经验回放缓存
class ReplayBuffer():
def __init__(self, capacity):
self.capacity = capacity
self.buffer = []
self.position = 0
def push(self, state, action, reward, next_state, done):
if len(self.buffer) < self.capacity:
self.buffer.append(None)
self.buffer[self.position] = (state, action, reward, next_state, done)
self.position = (self.position + 1) % self.capacity
def sample(self, batch_size):
batch = np.random.choice(self.buffer, batch_size)
states, actions, rewards, next_states, dones = zip(*batch)
return np.array(states), np.array(actions), np.array(rewards), np.array(next_states), np.array(dones)
def __len__(self):
return len(self.buffer)
# 定义DQN Agent
class DQNAgent():
def __init__(self, input_dim, output_dim, lr, gamma, epsilon):
self.input_dim = input_dim
self.output_dim = output_dim
self.lr = lr
self.gamma = gamma
self.epsilon = epsilon
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model = DQN(input_dim, output_dim).to(self.device)
self.target_model = DQN(input_dim, output_dim).to(self.device)
self.target_model.load_state_dict(self.model.state_dict())
self.target_model.eval()
self.optimizer = optim.Adam(self.model.parameters(), lr=self.lr)
self.loss_fn = nn.MSELoss()
self.replay_buffer = ReplayBuffer(capacity=10000)
def select_action(self, state):
if np.random.rand() < self.epsilon:
return np.random.randint(self.output_dim)
state = torch.tensor(state, dtype=torch.float32).unsqueeze(0).to(self.device)
q_values = self.model(state)
return torch.argmax(q_values).item()
def train(self, batch_size):
if len(self.replay_buffer) < batch_size:
return
states, actions, rewards, next_states, dones = self.replay_buffer.sample(batch_size)
states = torch.tensor(states, dtype=torch.float32).to(self.device)
actions = torch.tensor(actions, dtype=torch.long).unsqueeze(1).to(self.device)
rewards = torch.tensor(rewards, dtype=torch.float32).unsqueeze(1).to(self.device)
next_states = torch.tensor(next_states, dtype=torch.float32).to(self.device)
dones = torch.tensor(dones, dtype=torch.float32).unsqueeze(1).to(self.device)
q_values = self.model(states).gather(1, actions)
next_q_values = self.target_model(next_states).max(1)[0].unsqueeze(1)
target_q_values = rewards + self.gamma * next_q_values * (1 - dones)
loss = self.loss_fn(q_values, target_q_values.detach())
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
def update_target_model(self):
self.target_model.load_state_dict(self.model.state_dict())
def store_experience(self, state, action, reward, next_state, done):
self.replay_buffer.push(state, action, reward, next_state, done)
# 创建DQN Agent实例
input_dim = 4 # 输入维度
output_dim = 2 # 输出维度
lr = 0.001 # 学习率
gamma = 0.99 # 折扣因子
epsilon = 0.1 # 探索率
agent = DQNAgent(input_dim, output_dim, lr, gamma, epsilon)
# 训练DQN Agent
num_episodes = 1000
batch_size = 32
for episode in range(num_episodes):
state = env.reset()
done = False
total_reward = 0
while not done:
action = agent.select_action(state)
next_state, reward, done, _ = env.step(action)
agent.store_experience(state, action, reward, next_state, done)
agent.train(batch_size)
agent.update_target_model()
state = next_state
total_reward += reward
print(f"Episode: {episode+1}, Total Reward: {total_reward}")
# 使用训练好的DQN Agent进行预测
state = env.reset()
done = False
total_reward = 0
while not done:
action = agent.select_action(state)
next_state, reward, done, _ = env.step(action)
state = next_state
total_reward += reward
print(f"Total Reward: {total_reward}")
```
这段代码实现了一个简单的DQN Agent,包括DQN网络的定义、经验回放缓存的实现、Agent的训练和预测过程。你可以根据自己的需求进行修改和扩展。
dqn代码pytorch
DQN(Deep Q-Network)是一种使用深度学习网络对强化学习中的Q-learning算法进行改进的方法。代码实现可以使用PyTorch框架。下面是一个简单的示例代码:
首先,需要导入PyTorch库和其他必要的库,例如gym环境:
```
import torch
import torch.nn as nn
import torch.optim as optim
import gym
```
然后定义一个神经网络模型,用于近似Q函数。可以使用 nn.Module 类来创建模型。
```
class QNetwork(nn.Module):
def __init__(self, state_size, action_size):
super(QNetwork, self).__init__()
self.fc1 = nn.Linear(state_size, 24)
self.fc2 = nn.Linear(24, 24)
self.fc3 = nn.Linear(24, action_size)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
```
接下来,创建一个DQN对象,用于执行训练和测试:
```
class DQN:
def __init__(self, state_size, action_size):
self.state_size = state_size
self.action_size = action_size
self.memory = ReplayMemory() # Replay Memory用于存储训练数据
self.q_network = QNetwork(state_size, action_size) # 创建Q网络
self.target_network = QNetwork(state_size, action_size) # 创建目标网络
self.target_network.load_state_dict(self.q_network.state_dict())
self.optimizer = optim.Adam(self.q_network.parameters())
self.criterion = nn.MSELoss()
def train(self, batch_size):
if len(self.memory) < batch_size:
return
transitions = self.memory.sample(batch_size)
batch = Transition(*zip(*transitions))
state_batch = torch.cat(batch.state)
action_batch = torch.cat(batch.action)
reward_batch = torch.cat(batch.reward)
next_state_batch = torch.cat(batch.next_state)
q_values = self.q_network(state_batch).gather(1, action_batch.unsqueeze(1))
next_q_values = self.target_network(next_state_batch).detach().max(1)[0]
expected_q_values = next_q_values * GAMMA + reward_batch
loss = self.criterion(q_values, expected_q_values.unsqueeze(1))
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
def update_target_network(self):
self.target_network.load_state_dict(self.q_network.state_dict())
def select_action(self, state, epsilon):
if torch.rand(1)[0] > epsilon:
with torch.no_grad():
q_values = self.q_network(state)
action = q_values.max(0)[1].view(1, 1)
else:
action = torch.tensor([[random.randrange(self.action_size)]], dtype=torch.long)
return action
```
通过上述代码,可以定义一个DQN类,其中包括训练、更新目标网络、选择动作等功能。具体来说,train函数用于执行网络的训练过程,update_target_network函数用于更新目标网络的参数,select_action函数用于选择动作。
最后,可以使用gym环境进行训练和测试:
```
env = gym.make('CartPole-v1')
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
dqn = DQN(state_size, action_size)
for episode in range(EPISODES):
state = env.reset()
state = torch.tensor([state], dtype=torch.float32)
done = False
while not done:
action = dqn.select_action(state, epsilon)
next_state, reward, done, _ = env.step(action.item())
next_state = torch.tensor([next_state], dtype=torch.float32)
reward = torch.tensor([reward], dtype=torch.float32)
dqn.memory.push(state, action, next_state, reward)
state = next_state
dqn.train(BATCH_SIZE)
if episode % TARGET_UPDATE == 0:
dqn.update_target_network()
```
这段代码旨在使用DQN算法对CartPole-v1环境进行训练。具体训练和测试的逻辑可以根据需要进行扩展和修改。希望以上内容对理解DQN的PyTorch实现有所帮助!
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)