void *thread_worker2(void *args)

时间: 2023-05-19 13:05:27 浏览: 60
这是一个函数定义,它返回一个指向 void 类型的指针,函数名为 thread_worker2,参数为一个指向 void 类型的指针 args。这个函数可能是用来创建一个线程的工作函数。具体实现需要看上下文和代码。
相关问题

Write a multithreaded C program that calculates various statistical values for a list of numbers: • Average • Minimum • Maximum • Median • Standard deviation This program will be passed a series of numbers on the command line and will then create three separate worker threads first. One thread will determine the average of the numbers, the second will determine the maximum value, and the third will determine the minimum value. For example, suppose your program is passed the integers 90 81 78 95 79 72 85 The program will report The average value is 82 The minimum value is 72 The maximum value is 95 The variables representing the average, minimum, and maximum values will be stored globally. The worker threads will set these values, and the parent thread will output the values once the workers have exited. After that, add two more global variables and two more threads that will determine the median and the standard deviation, respectively.

Here's an implementation of the program in C: ```c #include <stdio.h> #include <stdlib.h> #include <pthread.h> #include <math.h> // Global variables for storing statistical values double average = 0.0; int minimum = 0; int maximum = 0; double median = 0.0; double std_dev = 0.0; // Struct for passing arguments to worker threads typedef struct { int* numbers; int count; } thread_args; // Worker thread for calculating average void* calculate_average(void* args) { thread_args* targs = (thread_args*) args; int* numbers = targs->numbers; int count = targs->count; double sum = 0.0; for (int i = 0; i < count; i++) { sum += numbers[i]; } average = sum / count; pthread_exit(NULL); } // Worker thread for calculating minimum void* calculate_minimum(void* args) { thread_args* targs = (thread_args*) args; int* numbers = targs->numbers; int count = targs->count; minimum = numbers[0]; for (int i = 1; i < count; i++) { if (numbers[i] < minimum) { minimum = numbers[i]; } } pthread_exit(NULL); } // Worker thread for calculating maximum void* calculate_maximum(void* args) { thread_args* targs = (thread_args*) args; int* numbers = targs->numbers; int count = targs->count; maximum = numbers[0]; for (int i = 1; i < count; i++) { if (numbers[i] > maximum) { maximum = numbers[i]; } } pthread_exit(NULL); } // Worker thread for calculating median void* calculate_median(void* args) { thread_args* targs = (thread_args*) args; int* numbers = targs->numbers; int count = targs->count; int* sorted_numbers = malloc(count * sizeof(int)); for (int i = 0; i < count; i++) { sorted_numbers[i] = numbers[i]; } for (int i = 0; i < count - 1; i++) { for (int j = i + 1; j < count; j++) { if (sorted_numbers[i] > sorted_numbers[j]) { int temp = sorted_numbers[i]; sorted_numbers[i] = sorted_numbers[j]; sorted_numbers[j] = temp; } } } if (count % 2 == 0) { median = (sorted_numbers[count / 2 - 1] + sorted_numbers[count / 2]) / 2.0; } else { median = sorted_numbers[count / 2]; } free(sorted_numbers); pthread_exit(NULL); } // Worker thread for calculating standard deviation void* calculate_std_dev(void* args) { thread_args* targs = (thread_args*) args; int* numbers = targs->numbers; int count = targs->count; double sum = 0.0; for (int i = 0; i < count; i++) { sum += pow(numbers[i] - average, 2); } std_dev = sqrt(sum / count); pthread_exit(NULL); } int main(int argc, char* argv[]) { // Parse command line arguments if (argc < 2) { printf("Usage: %s <number1> <number2> ... <numberN>\n", argv[0]); return 1; } int count = argc - 1; int* numbers = malloc(count * sizeof(int)); for (int i = 0; i < count; i++) { numbers[i] = atoi(argv[i + 1]); } // Create worker threads pthread_t threads[5]; thread_args targs = {numbers, count}; pthread_create(&threads[0], NULL, calculate_average, &targs); pthread_create(&threads[1], NULL, calculate_minimum, &targs); pthread_create(&threads[2], NULL, calculate_maximum, &targs); pthread_create(&threads[3], NULL, calculate_median, &targs); pthread_create(&threads[4], NULL, calculate_std_dev, &targs); // Wait for worker threads to complete for (int i = 0; i < 5; i++) { pthread_join(threads[i], NULL); } // Print results printf("The average value is %.2f\n", average); printf("The minimum value is %d\n", minimum); printf("The maximum value is %d\n", maximum); printf("The median value is %.2f\n", median); printf("The standard deviation is %.2f\n", std_dev); // Clean up free(numbers); return 0; } ``` The program takes a list of numbers as command line arguments, creates five worker threads to calculate statistical values, and then outputs the results once the worker threads have completed their calculations. Note that the median calculation uses a simple sorting algorithm to sort the list of numbers first. This may not be efficient for very large lists of numbers, but it works well enough for small lists. Also note that the standard deviation calculation uses the formula for sample standard deviation, which divides by N-1 instead of N to correct for bias.

利用freertos的线程写一个线程池

可以通过以下步骤实现使用 FreeRTOS 的线程编写线程池: 1. 定义线程池结构体: ``` typedef struct { int num_threads; // 线程数 TaskHandle_t *threads; // 线程句柄数组 SemaphoreHandle_t task_sem; // 任务信号量 SemaphoreHandle_t done_sem; // 完成信号量 task_func_t *task_funcs; // 任务函数数组 void **task_args; // 任务参数数组 int *task_results; // 任务结果数组 int next_task; // 下一个任务的索引 } thread_pool_t; ``` 2. 初始化线程池: ``` void thread_pool_init(thread_pool_t *pool, int num_threads) { pool->num_threads = num_threads; pool->threads = malloc(num_threads * sizeof(TaskHandle_t)); pool->task_funcs = malloc(num_threads * sizeof(task_func_t)); pool->task_args = malloc(num_threads * sizeof(void *)); pool->task_results = malloc(num_threads * sizeof(int)); pool->next_task = 0; pool->task_sem = xSemaphoreCreateBinary(); pool->done_sem = xSemaphoreCreateCounting(num_threads, 0); for (int i = 0; i < num_threads; i++) { xTaskCreatePinnedToCore(thread_pool_worker, "worker", 4096, (void *)pool, 5, &pool->threads[i], 0); } } ``` 3. 定义任务函数类型: ``` typedef void *(*task_func_t)(void *); ``` 4. 定义线程池工作函数: ``` void thread_pool_worker(void *arg) { thread_pool_t *pool = (thread_pool_t *)arg; for (;;) { // 等待任务信号量 xSemaphoreTake(pool->task_sem, portMAX_DELAY); // 获取下一个任务 int task_index = pool->next_task++; // 执行任务 if (task_index < pool->num_threads) { pool->task_results[task_index] = pool->task_funcs[task_index](pool->task_args[task_index]); } // 发送完成信号量 xSemaphoreGive(pool->done_sem); } } ``` 5. 提交任务到线程池: ``` int thread_pool_submit(thread_pool_t *pool, task_func_t func, void *arg) { if (pool->next_task >= pool->num_threads) { return -1; // 线程池已满 } int task_index = pool->next_task++; pool->task_funcs[task_index] = func; pool->task_args[task_index] = arg; // 发送任务信号量 xSemaphoreGive(pool->task_sem); return task_index; } ``` 6. 等待线程池中所有任务完成: ``` void thread_pool_wait(thread_pool_t *pool) { for (int i = 0; i < pool->num_threads; i++) { xSemaphoreTake(pool->done_sem, portMAX_DELAY); } } ``` 7. 销毁线程池: ``` void thread_pool_destroy(thread_pool_t *pool) { vSemaphoreDelete(pool->task_sem); vSemaphoreDelete(pool->done_sem); for (int i = 0; i < pool->num_threads; i++) { vTaskDelete(pool->threads[i]); } free(pool->threads); free(pool->task_funcs); free(pool->task_args); free(pool->task_results); } ``` 这样,我们就可以使用 FreeRTOS 的线程实现一个简单的线程池。

相关推荐

将下列java代码改为python代码:import java.util.ArrayList; import java.util.Comparator; import java.util.List; import java.util.concurrent.CountDownLatch; import java.net.*; public class Scanport { public static void main(String[] args) throws InterruptedException { String host = "120.46.209.149"; int startPort = 1; int endPort = 1024; int start = 0; int end = 0; int step = Math.round(endPort / 1000) + 1;// 四舍五入函数 for (int i = 1; i < step; i++) { start = startPort + (i - 1) * 1000; end = startPort + i * 1000; System.out.println("正在扫描" + start + "-" + end); scan(host, start, end); } } public static void scan(String host, int startPort, int endPort) throws InterruptedException { List<Integer> portList = new ArrayList<>(); final CountDownLatch latch = new CountDownLatch(endPort - startPort + 1); for (int port = startPort; port <= endPort; port++) { int finalPort = port; Thread thread = new Thread(new Runnable() { @Override public void run() { try { Socket socket = new Socket(); socket.connect(new InetSocketAddress(host, finalPort), 100); System.out.println("TCP端口" + finalPort + "开放"); portList.add(finalPort); } catch (Exception e) { } try { DatagramSocket dsocket = new DatagramSocket(finalPort); dsocket.close(); } catch (SocketException e) { portList.add(finalPort); System.out.println("UDP端口" + finalPort + "开放"); } latch.countDown(); } }); thread.start(); } latch.await(); portList.sort(new Comparator<Integer>() { @Override public int compare(Integer o1, Integer o2) { return o1.compareTo(o2); } }); } }

最新推荐

recommend-type

VB学生档案管理系统设计与实现.rar

计算机专业毕业设计VB精品论文资源
recommend-type

debugpy-1.6.3-cp37-cp37m-win_amd64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

命名ACL和拓展ACL标准ACL的具体区别

命名ACL和标准ACL的主要区别在于匹配条件和作用范围。命名ACL可以基于协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。而标准ACL只能基于源地址进行匹配,并只能应用到接口。拓展ACL则可以基于源地址、目的地址、协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。