ASPP模块代码
时间: 2023-07-02 13:06:33 浏览: 184
asp代码
以下是ASPP模块的代码示例:
```python
import torch
import torch.nn as nn
class ASPP(nn.Module):
def __init__(self, in_channel, out_channel, rates=[6, 12, 18]):
super(ASPP, self).__init__()
self.conv1 = nn.Conv2d(in_channel, out_channel, 1)
self.conv2 = nn.Conv2d(in_channel, out_channel, 3, padding=rates[0], dilation=rates[0])
self.conv3 = nn.Conv2d(in_channel, out_channel, 3, padding=rates[1], dilation=rates[1])
self.conv4 = nn.Conv2d(in_channel, out_channel, 3, padding=rates[2], dilation=rates[2])
self.conv5 = nn.Conv2d(out_channel*5, out_channel, 1)
self.bn = nn.BatchNorm2d(out_channel)
self.relu = nn.ReLU()
def forward(self, x):
feature_map_h = x.size()[2]
feature_map_w = x.size()[3]
out1 = self.conv1(x)
out2 = self.conv2(x)
out3 = self.conv3(x)
out4 = self.conv4(x)
out2 = self.bn(out2)
out3 = self.bn(out3)
out4 = self.bn(out4)
out5 = nn.functional.interpolate(out1, size=(feature_map_h, feature_map_w), mode='bilinear', align_corners=True)
out6 = nn.functional.interpolate(out2, size=(feature_map_h, feature_map_w), mode='bilinear', align_corners=True)
out7 = nn.functional.interpolate(out3, size=(feature_map_h, feature_map_w), mode='bilinear', align_corners=True)
out8 = nn.functional.interpolate(out4, size=(feature_map_h, feature_map_w), mode='bilinear', align_corners=True)
out = torch.cat([out1, out6, out7, out8, out5], dim=1)
out = self.conv5(out)
out = self.bn(out)
out = self.relu(out)
return out
```
该模块包括5个卷积层,其中3个是具有不同空洞率的空洞卷积层,其余两个是1×1卷积层。在前三个卷积层中,我们使用具有不同空洞率的卷积,以便能够捕获不同尺度的信息。在第四个卷积层中,我们使用3×3卷积。在最后一个卷积层中,我们将所有特征图拼接在一起并使用1×1卷积层来减少通道数。最后,我们使用批量归一化和ReLU激活函数来处理输出。
阅读全文