空洞卷积模块的代码怎么写
时间: 2023-12-01 18:02:52 浏览: 85
空洞卷积模块是一种卷积操作,可以在不增加参数数量和计算量的前提下增加感受野大小。下面是一个简单的空洞卷积模块的代码实现:
``` python
import torch.nn as nn
class ASPP(nn.Module):
def __init__(self, in_channels, out_channels, dilation_rates=[1, 6, 12, 18]):
super().__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1)
self.conv2 = nn.Conv2d(in_channels, out_channels, kernel_size=3, dilation=dilation_rates[0], padding=dilation_rates[0])
self.conv3 = nn.Conv2d(in_channels, out_channels, kernel_size=3, dilation=dilation_rates[1], padding=dilation_rates[1])
self.conv4 = nn.Conv2d(in_channels, out_channels, kernel_size=3, dilation=dilation_rates[2], padding=dilation_rates[2])
self.conv5 = nn.Conv2d(in_channels, out_channels, kernel_size=3, dilation=dilation_rates[3], padding=dilation_rates[3])
self.conv6 = nn.Conv2d(out_channels*5, out_channels, kernel_size=1)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x1 = self.conv1(x)
x2 = self.conv2(x)
x3 = self.conv3(x)
x4 = self.conv4(x)
x5 = self.conv5(x)
x = torch.cat([x1, x2, x3, x4, x5], dim=1)
x = self.conv6(x)
x = self.relu(x)
return x
```
该模块接受输入张量,包含多个空洞卷积层和一个1x1卷积层,最后通过ReLU激活函数输出结果。在实现中,使用了nn.Conv2d类创建了卷积层,并指定了空洞率(dilation)和填充(padding)参数。在forward函数中,将输入张量分别经过各个卷积层,并将它们的输出张量拼接起来,最后再通过1x1卷积层和ReLU激活函数输出结果。
阅读全文