stm32G474中 HRTIM 总线使能代码是什么
时间: 2024-05-01 14:24:00 浏览: 190
在 STM32G474 中,要使能 HRTIM 总线,需要执行以下步骤:
1. 配置 HRTIM 时钟使能,使能 HRTIM 时钟。
```c
RCC->AHB4ENR |= RCC_AHB4ENR_HRTIMEN; // 使能 HRTIM 时钟
```
2. 配置 HRTIM 控制寄存器 HRTIM_CR1,使能 HRTIM 总线。
```c
HRTIM1->CR1 |= HRTIM_CR1_HRTIMEN; // 使能 HRTIM 总线
```
完整代码示例:
```c
// 使能 HRTIM 总线
RCC->AHB4ENR |= RCC_AHB4ENR_HRTIMEN; // 使能 HRTIM 时钟
HRTIM1->CR1 |= HRTIM_CR1_HRTIMEN; // 使能 HRTIM 总线
```
相关问题
stm32g474使用hrtim触发adc采样
STM32G474微控制器集成了一个高级定时器HRTIM(High Resolution Timer),它支持硬件触发ADC(Analog-to-Digital Converter)采样。要使用HRTIM触发ADC采样,你需要按照以下步骤操作:
1. **初始化HRTIM**:
首先,配置HRTIM时钟源、工作模式以及通道结构。确保HRTIM被配置为定时模式,并设置合适的计数器值。
```c
// 初始化HRTIM
HAL_HRTime_Init(&hrtim.Instance);
HRtimer.Instance.Init.Period = ADC_SAMPLING_PERIOD;
HRtimer.Instance.Init.Mode = HRTIMER_MODE_NORMAL;
HRtimer.Instance.Init.CounterMode = HRTIMER_COUNTERMODE_UP;
HRtimer.Instance.Init.ClockDivision = HRTIMER_CLOCKDIVISION_DIV1;
HRtimer.Instance.Init.RepetitionCounter = 0;
HAL_HRTime_MspInit(&hrtim);
HAL_HRTime_Start(&hrtim.Instance);
```
这里的`ADC_SAMPLING_PERIOD`应该足够长来保证ADC能够完成一次完整的转换周期。
2. **配置ADC**:
在HRTIM开始运行之前,配置ADC以便于接收HRTIM生成的中断信号。这通常涉及到设置ADC的扫描模式为连续模式,外触发,并连接到合适的输入通道。
```c
// 初始化ADC并设置外触发
HAL_ADC_Init(&hadc1);
HAL_ADCEx_ConfigChannel(&hadc1, &adc_channel_config);
hadc1.Instance.InstanceSource = ADC_SOFTWARE_START; // 硬件启动改为软件启动,以便外部事件控制
```
3. **设置中断处理程序**:
为了响应HRTIM的溢出或结束事件,需要设置相应的中断服务函数。当HRTIM到达预设点时,会触发这个中断。
```c
__HAL_NVIC_EnableIRQ(HRTIM_IRQn); // 先启用中断
void HRTIM_IRQHandler(void)
{
HAL_HRTime_IRQHandler(&hrtim.Instance);
if (HAL_HRTime_GetState(&hrtim.Instance) == HAL_HR_TIME_STATE_OVERFLOW)
{
HAL_ADC诱发SingleSoftwareConversion(&hadc1); // 触发ADC采样
}
}
```
每次HRTIM溢出,都会通过中断触发ADC采样。
STM32G474 的HRTIM 标准库程序
以下是一个简单的基于 STM32CubeIDE 的 STM32G474 HRTIM 标准库程序示例:
```c
#include "stm32g4xx.h"
#include "stm32g4xx_hal.h"
#include "stm32g4xx_hal_hrtim.h"
#define HRTIM_TIMER_ID HRTIM_TIMERINDEX_TIMER_A
HRTIM_HandleTypeDef hhrtim1;
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_HRTIM1_Init(void);
int main(void) {
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_HRTIM1_Init();
HAL_HRTIM_WaveformCounterStart(&hhrtim1, HRTIM_TIMER_ID);
while (1);
}
void SystemClock_Config(void) {
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0};
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 1;
RCC_OscInitStruct.PLL.PLLN = 10;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV7;
RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
Error_Handler();
}
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) {
Error_Handler();
}
PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_HRTIM1;
PeriphClkInitStruct.Hrtim1ClockSelection = RCC_HRTIM1CLK_PLLCLK;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK) {
Error_Handler();
}
}
static void MX_HRTIM1_Init(void) {
HRTIM_TimeBaseCfgTypeDef pTimeBaseCfg = {0};
HRTIM_TimerCfgTypeDef pTimerCfg = {0};
HRTIM_OutputCfgTypeDef pOutputCfg = {0};
hhrtim1.Instance = HRTIM1;
hhrtim1.Init.HRTIMInterruptResquests = HRTIM_IT_NONE;
hhrtim1.Init.SyncOptions = HRTIM_SYNCOPTION_NONE;
if (HAL_HRTIM_Init(&hhrtim1) != HAL_OK) {
Error_Handler();
}
pTimeBaseCfg.Period = 0xFF;
pTimeBaseCfg.RepetitionCounter = 0x00;
pTimeBaseCfg.PrescalerRatio = HRTIM_PRESCALERRATIO_MUL32;
pTimeBaseCfg.Mode = HRTIM_MODE_CONTINUOUS;
if (HAL_HRTIM_TimeBaseConfig(&hhrtim1, HRTIM_TIMER_ID, &pTimeBaseCfg) != HAL_OK) {
Error_Handler();
}
pTimerCfg.InterruptRequests = HRTIM_TIM_IT_NONE;
pTimerCfg.DMARequests = HRTIM_TIM_DMA_NONE;
pTimerCfg.DMASrcAddress = 0x00000000;
pTimerCfg.DMADstAddress = 0x00000000;
pTimerCfg.DMASize = 0x1;
pTimerCfg.HalfModeEnable = HRTIM_HALFMODE_DISABLED;
pTimerCfg.StartOnSync = HRTIM_SYNCSTART_DISABLED;
pTimerCfg.ResetOnSync = HRTIM_SYNCRESET_DISABLED;
pTimerCfg.DACSynchro = HRTIM_DACSYNC_NONE;
pTimerCfg.PreloadEnable = HRTIM_PRELOAD_DISABLED;
pTimerCfg.UpdateGating = HRTIM_UPDATEGATING_INDEPENDENT;
pTimerCfg.BurstMode = HRTIM_TIMERBURSTMODE_MAINTAINCLOCK;
pTimerCfg.RepetitionUpdate = HRTIM_UPDATEONREPETITION_DISABLED;
pTimerCfg.ReSyncUpdate = HRTIM_TIMERESYNC_UPDATE_UNCONDITIONAL;
if (HAL_HRTIM_TimerConfig(&hhrtim1, HRTIM_TIMER_ID, &pTimerCfg) != HAL_OK) {
Error_Handler();
}
pOutputCfg.Polarity = HRTIM_OUTPUTPOLARITY_HIGH;
pOutputCfg.SetSource = HRTIM_OUTPUTSET_NONE;
pOutputCfg.ResetSource = HRTIM_OUTPUTRESET_NONE;
pOutputCfg.IdleMode = HRTIM_OUTPUTIDLEMODE_NONE;
pOutputCfg.IdleState = HRTIM_OUTPUTIDLESTATE_INACTIVE;
if (HAL_HRTIM_WaveformOutputConfig(&hhrtim1, HRTIM_TIMER_ID, HRTIM_OUTPUT_TA1, &pOutputCfg) != HAL_OK) {
Error_Handler();
}
if (HAL_HRTIM_WaveformCounterStart(&hhrtim1, HRTIM_TIMER_ID) != HAL_OK) {
Error_Handler();
}
if (HAL_HRTIM_WaveformSetOutputLevel(&hhrtim1, HRTIM_TIMER_ID, HRTIM_OUTPUT_TA1, HRTIM_OUTPUTLEVEL_ACTIVE) != HAL_OK) {
Error_Handler();
}
}
static void MX_GPIO_Init(void) {
GPIO_InitTypeDef GPIO_InitStruct = {0};
__HAL_RCC_GPIOA_CLK_ENABLE();
GPIO_InitStruct.Pin = GPIO_PIN_8;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF2_HRTIM1;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
```
这个程序的作用是将 HRTIM1 的 Timer A 的输出引脚(PA8)配置为高电平。你可以根据需要修改各种 HRTIM 的配置参数,以实现你的应用需求。
阅读全文