tf.keras.preprocessing.image_dataset_from_directory()怎么用

时间: 2024-06-09 09:12:37 浏览: 234
这个函数是通过一个文件夹路径作为输入,然后生成一个 ImageDataGenerator 实例。你可以使用这个实例来进行图像数据的预处理和数据增强。以下是一个例子: ```python import tensorflow as tf train_dataset = tf.keras.preprocessing.image_dataset_from_directory( 'path/to/your/directory', validation_split=0.2, subset="training", seed=123, image_size=(224, 224), batch_size=32) ``` 这样就生成了一个用于训练的数据集。其中包括了 80% 的数据作为训练数据,20% 的数据作为验证数据,图像分辨率是 224×224,并且每次产生的批次数据大小为 32。 如果你想要进行数据增强,可以在 ImageDataGenerator 中设置一些参数,比如旋转、平移、翻转等。可以参考 TensorFlow 官方文档中的介绍:[ImageDataGenerator class](https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator)。
相关问题

如何用tf.keras.preprocessing.image_dataset_from_directory()生成训练集验证集和测试集

感谢您的提问。使用 tf.keras.preprocessing.image_dataset_from_directory() 函数生成训练集、验证集和测试集的过程如下: 1. 准备数据集,要求数据集按照类别分好文件夹,每个子文件夹中应存放该类别的图像数据。 2. 导入 tensorflow 和其他必要的库。 3. 使用 tf.keras.preprocessing.image_dataset_from_directory() 函数加载数据集,并按比例划分成训练集、验证集和测试集。 4. 对图像数据进行预处理,包括数据增强、标准化等操作。 5. 创建模型,并将训练集用于训练模型。 6. 使用验证集调整模型参数和模型架构,并根据测试集评估模型性能。 下面是使用 tf.keras.preprocessing.image_dataset_from_directory() 函数生成训练集、验证集和测试集的示例代码: ``` import tensorflow as tf import pathlib # 加载数据集 data_dir = pathlib.Path("path/to/dataset") train_ds = tf.keras.preprocessing.image_dataset_from_directory( data_dir, validation_split=0.2, subset="training", seed=123, image_size=(img_height, img_width), batch_size=batch_size) val_ds = tf.keras.preprocessing.image_dataset_from_directory( data_dir, validation_split=0.2, subset="validation", seed=123, image_size=(img_height, img_width), batch_size=batch_size) # 数据预处理 data_augmentation = tf.keras.Sequential( [ tf.keras.layers.experimental.preprocessing.RandomFlip("horizontal"), tf.keras.layers.experimental.preprocessing.RandomRotation(0.1), tf.keras.layers.experimental.preprocessing.RandomZoom(0.1), ] ) normalization_layer = tf.keras.layers.experimental.preprocessing.Rescaling(1./255) # 构建模型 model = tf.keras.Sequential([ data_augmentation, normalization_layer, tf.keras.layers.Conv2D(32, 3, activation='relu'), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Conv2D(64, 3, activation='relu'), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Conv2D(128, 3, activation='relu'), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Flatten(), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dense(num_classes) ]) # 训练模型 model.compile(optimizer='adam', loss=tf.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) model.fit( train_ds, validation_data=val_ds, epochs=epochs ) # 模型评估 test_ds = tf.keras.preprocessing.image_dataset_from_directory( data_dir, image_size=(img_height, img_width), batch_size=batch_size) model.evaluate(test_ds) ``` 其中,data_dir 表示数据集所在目录,img_height 和 img_width 分别表示图像高度和宽度,batch_size 表示 batch 的大小,epochs 表示训练轮数,num_classes 表示分类数。训练集和验证集的划分比例由 validation_split 参数控制。data_augmentation、normalization_layer 分别表示数据增强和标准化的操作,model 表示构建的模型,model.compile() 函数指定了优化器、损失函数和评估指标,model.fit() 函数用于训练模型,model.evaluate() 函数用于评估模型性能。

如何对tf.keras.preprocessing.image_dataset_from_directory()处理出来的数据进行图像增强?

可以使用tf.keras.preprocessing.image.ImageDataGenerator()来进行图像增强。首先,需要定义一个ImageDataGenerator对象并指定要进行的增强操作,然后将其作为参数传递给image_dataset_from_directory()函数,以生成增强后的数据集。 例如,以下代码演示了如何使用ImageDataGenerator对数据集进行随机旋转和水平翻转的增强: ``` from tensorflow.keras.preprocessing.image import ImageDataGenerator # 定义ImageDataGenerator对象,指定要进行的增强操作 data_generator = ImageDataGenerator(rotation_range=20, horizontal_flip=True) # 使用image_dataset_from_directory()函数读取数据集并进行图像增强 train_ds = tf.keras.preprocessing.image_dataset_from_directory( './data/train/', validation_split=0.2, subset="training", seed=123, image_size=(224, 224), batch_size=32) train_ds_augmented = train_ds.map(lambda x, y: (data_generator(x), y)) ``` 在上述代码中,定义了一个ImageDataGenerator对象data_generator,指定了旋转角度范围为20度和水平翻转的增强操作。然后,使用image_dataset_from_directory()函数读取数据集,并调用map()方法将ImageDataGenerator对象应用于数据集中的图像,生成增强后的数据集train_ds_augmented。 注意,在使用ImageDataGenerator进行增强时,应该确保只对训练集进行增强操作,而不对验证集或测试集进行增强,以避免数据泄露问题。
阅读全文

相关推荐

帮我把这段代码从tensorflow框架改成pytorch框架: import tensorflow as tf import os import numpy as np import matplotlib.pyplot as plt os.environ["CUDA_VISIBLE_DEVICES"] = "0" base_dir = 'E:/direction/datasetsall/' train_dir = os.path.join(base_dir, 'train_img/') validation_dir = os.path.join(base_dir, 'val_img/') train_cats_dir = os.path.join(train_dir, 'down') train_dogs_dir = os.path.join(train_dir, 'up') validation_cats_dir = os.path.join(validation_dir, 'down') validation_dogs_dir = os.path.join(validation_dir, 'up') batch_size = 64 epochs = 50 IMG_HEIGHT = 128 IMG_WIDTH = 128 num_cats_tr = len(os.listdir(train_cats_dir)) num_dogs_tr = len(os.listdir(train_dogs_dir)) num_cats_val = len(os.listdir(validation_cats_dir)) num_dogs_val = len(os.listdir(validation_dogs_dir)) total_train = num_cats_tr + num_dogs_tr total_val = num_cats_val + num_dogs_val train_image_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255) validation_image_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255) train_data_gen = train_image_generator.flow_from_directory(batch_size=batch_size, directory=train_dir, shuffle=True, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='categorical') val_data_gen = validation_image_generator.flow_from_directory(batch_size=batch_size, directory=validation_dir, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='categorical') sample_training_images, _ = next(train_data_gen) model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(16, 3, padding='same', activation='relu', input_shape=(IMG_HEIGHT, IMG_WIDTH, 3)), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Conv2D(32, 3, padding='same', activation='relu'), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Conv2D(64, 3, padding='same', activation='relu'), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Flatten(), tf.keras.layers.Dense(256, activation='relu'), tf.keras.layers.Dense(2, activation='softmax') ]) model.compile(optimizer='adam', loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), metrics=['accuracy']) model.summary() history = model.fit_generator( train_data_gen, steps_per_epoch=total_train // batch_size, epochs=epochs, validation_data=val_data_gen, validation_steps=total_val // batch_size ) # 可视化训练结果 acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs_range = range(epochs) model.save("./model/timo_classification_128_maxPool2D_dense256.h5")

import tensorflow as tf from tensorflow.keras import datasets, layers, models, optimizers from tensorflow.keras.preprocessing import image_dataset_from_directory import matplotlib.pyplot as plt # 定义数据集路径 data_dir = r'F:\Pycham\project\data\FMD' # 定义图像大小和批处理大小 image_size = (224, 224) batch_size = 32 # 从目录中加载训练数据集 train_ds = image_dataset_from_directory( data_dir, validation_split=0.2, subset="training", seed=123, image_size=image_size, batch_size=batch_size) # 从目录中加载验证数据集 val_ds = image_dataset_from_directory( data_dir, validation_split=0.2, subset="validation", seed=123, image_size=image_size, batch_size=batch_size) # 构建卷积神经网络模型 model = models.Sequential() model.add(layers.experimental.preprocessing.Rescaling(1./255, input_shape=(image_size[0], image_size[1], 3))) model.add(layers.Conv2D(32, (3, 3), activation='selu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='selu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='selu')) model.add(layers.Conv2D(128, (3, 3), activation='selu')) model.add(layers.MaxPooling2D((2, 2))) # 添加全连接层 model.add(layers.Flatten()) model.add(layers.Dense(128, activation='selu')) model.add(layers.Dropout(0.5)) model.add(layers.Dense(64, activation='selu')) model.add(layers.Dense(10)) # 编译模型,使用 SGD 优化器和 Categorical Crossentropy 损失函数 model.compile(optimizer=optimizers.SGD(learning_rate=0.01, momentum=0.9), loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) # 训练模型,共训练 20 轮 history = model.fit(train_ds, epochs=5, validation_data=val_ds) # 绘制训练过程中的准确率和损失曲线 plt.plot(history.history['accuracy'], label='accuracy') plt.plot(history.history['val_accuracy'], label = 'val_accuracy') plt.xlabel('Epoch') plt.ylabel('Accuracy') plt.ylim([0.5, 1]) plt.legend(loc='lower right') plt.show() # 在测试集上评估模型准确率 test_loss, test_acc = model.evaluate(val_ds) print(f'测试准确率: {test_acc}')上述代码得出的准确率仅为0.5,请你通过修改学习率等方式修改代码,假设数据集路径为F:\Pycham\project\data\FMD

最新推荐

recommend-type

【中国房地产业协会-2024研报】2024年第三季度房地产开发企业信用状况报告.pdf

行业研究报告、行业调查报告、研报
recommend-type

【中国银行-2024研报】美国大选结果对我国芯片产业发展的影响和应对建议.pdf

行业研究报告、行业调查报告、研报
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自
recommend-type

如何在Springboot后端项目中实现前端的多人视频会议功能,并使用Vue.js与ElementUI进行界面开发?

要在Springboot后端项目中实现前端的多人视频会议功能,首先需要了解Springboot、WebRTC、Vue.js以及ElementUI的基本概念和用途。Springboot作为后端框架,负责处理业务逻辑和提供API接口;WebRTC技术则用于实现浏览器端的实时视频和音频通信;Vue.js作为一个轻量级的前端框架,用于构建用户界面;ElementUI提供了丰富的UI组件,可加速前端开发过程。 参考资源链接:[多人视频会议前端项目:Springboot与WebRTC的结合](https://wenku.csdn.net/doc/6jkpejn9x3?spm=1055.2569.3001