bert4torch.model和bert-base-chinese是一个意思吗
时间: 2024-08-15 10:09:27 浏览: 156
BERT4Torch是一个基于PyTorch实现的BERT模型库,它封装了Hugging Face的Transformers库中的预训练模型,包括`bert-base-chinese`等。`bert-base-chinese`实际上是一个特定的语言模型,它是针对中文语言设计的BERT基础模型。
所以,`bert4torch.model`中的`model`通常会包含`bert-base-chinese`这一模型,当你在`bert4torch`库中提到这个名称时,是指可以使用的预训练Chinese BERT模型资源。两者并非完全一样,但`bert4torch.model`很可能包含了对`bert-base-chinese`的支持。
如果你想要在`bert4torch`中加载并使用`bert-base-chinese`模型,你可以按照该库的文档说明进行操作,例如通过`model = BertModel.from_pretrained('bert-base-chinese')`这样的代码。
相关问题
bert-base-chinese_bert4torch_config.json怎么使用加载
BERT模型(Bidirectional Encoder Representations from Transformers)在中国版本中通常称为`bert-base-chinese`。如果你想要使用预训练的BERT模型,并通过`bert4torch`库加载`bert-base-chinese`配置文件,首先需要确保已经安装了相关的库,如`transformers`和`bert4torch`。
以下是基本步骤:
1. **安装依赖**:
```
pip install transformers bert4torch
```
2. **导入必要的模块**:
```python
import torch
from transformers import BertModel, BertConfig
from bert4torch.tokenizers import Tokenizer4Bert
```
3. **加载`bert-base-chinese_bert4torch_config.json`**:
这个文件包含模型的配置信息,你可以通过`BertConfig.from_pretrained`函数读取它:
```python
config = BertConfig.from_pretrained('bert-base-chinese')
```
4. **加载预训练模型**:
使用`config`创建模型实例,可以选择加载整个模型(weights + config),只加载权重,或者只加载配置:
```python
# 加载整个模型 (weights + config)
model = BertModel(config)
# 只加载权重 (weights only)
model = BertModel.from_pretrained('bert-base-chinese', config=config)
# 或者仅加载配置 (config only)
model = BertModel(config)
model.load_state_dict(torch.load('path/to/bert-state-dict.pt'))
```
5. **准备tokenizer**:
如果你想处理文本数据,还需要使用对应的分词器(Tokenizer4Bert):
```python
tokenizer = Tokenizer4Bert.from_pretrained('bert-base-chinese')
```
6. **使用模型**:
现在你可以用模型对输入的文本进行编码、分类或其他任务的操作。
import jieba import torch from sklearn.metrics.pairwise import cosine_similarity from transformers import BertTokenizer, BertModel seed_words = ['姓名'] # 加载微博文本数据 text_data = [] with open("output/weibo1.txt", "r", encoding="utf-8") as f: for line in f: text_data.append(line.strip()) # 加载BERT模型和分词器 tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') model = BertModel.from_pretrained('bert-base-chinese') seed_tokens = ["[CLS]"] + seed_words + ["[SEP]"] seed_token_ids = tokenizer.convert_tokens_to_ids(seed_tokens) seed_segment_ids = [0] * len(seed_token_ids) # 转换为张量,调用BERT模型进行编码 seed_token_tensor = torch.tensor([seed_token_ids]) seed_segment_tensor = torch.tensor([seed_segment_ids]) with torch.no_grad(): seed_outputs = model(seed_token_tensor, seed_segment_tensor) seed_encoded_layers = seed_outputs[0] jieba.load_userdict('data/userdict.txt') # 构建隐私词库 privacy_words = set() for text in text_data: words = jieba.lcut(text.strip()) tokens = ["[CLS]"] + words + ["[SEP]"] token_ids = tokenizer.convert_tokens_to_ids(tokens) segment_ids = [0] * len(token_ids) # 转换为张量,调用BERT模型进行编码 token_tensor = torch.tensor([token_ids]) segment_tensor = torch.tensor([segment_ids]) with torch.no_grad(): outputs = model(token_tensor, segment_tensor) encoded_layers = outputs[0] # 对于每个词,计算它与种子词的相似度 for i in range(1, len(tokens)-1): word = tokens[i] if word in seed_words: continue word_tensor = encoded_layers[0][i].reshape(1, -1) seed_tensors =seed_encoded_layers[0][i].reshape(1, -1) # 计算当前微博词汇与种子词的相似度 sim = cosine_similarity(word_tensor, seed_tensors, dense_output=False)[0].max() print(sim, word) if sim > 0.5 and len(word) > 1: privacy_words.add(word) print(privacy_words) 上述代码运行之后有错误,报错信息为:Traceback (most recent call last): File "E:/PyCharm Community Edition 2020.2.2/Project/WordDict/newsim.py", line 397, in <module> seed_tensors =seed_encoded_layers[0][i].reshape(1, -1) IndexError: index 3 is out of bounds for dimension 0 with size 3. 请帮我修改
根据报错信息,问题出在获取seed_encoded_layers的第三个元素时,超过了张量的维度范围。可以通过打印输出seed_encoded_layers的形状,来确定张量的维度情况,看看是否与预期一致。
同时,可以检查一下seed_tokens和seed_token_ids的值,确保它们正确。
下面是修改后的代码:
```
import jieba
import torch
from sklearn.metrics.pairwise import cosine_similarity
from transformers import BertTokenizer, BertModel
seed_words = ['姓名']
# 加载微博文本数据
text_data = []
with open("output/weibo1.txt", "r", encoding="utf-8") as f:
for line in f:
text_data.append(line.strip())
# 加载BERT模型和分词器
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
model = BertModel.from_pretrained('bert-base-chinese')
seed_tokens = ["[CLS]"] + seed_words + ["[SEP]"]
seed_token_ids = tokenizer.convert_tokens_to_ids(seed_tokens)
seed_segment_ids = [0] * len(seed_token_ids)
# 转换为张量,调用BERT模型进行编码
seed_token_tensor = torch.tensor([seed_token_ids])
seed_segment_tensor = torch.tensor([seed_segment_ids])
with torch.no_grad():
seed_outputs = model(seed_token_tensor, seed_segment_tensor)
seed_encoded_layers = seed_outputs[0]
jieba.load_userdict('data/userdict.txt')
# 构建隐私词库
privacy_words = set()
for text in text_data:
words = jieba.lcut(text.strip())
tokens = ["[CLS]"] + words + ["[SEP]"]
token_ids = tokenizer.convert_tokens_to_ids(tokens)
segment_ids = [0] * len(token_ids)
# 转换为张量,调用BERT模型进行编码
token_tensor = torch.tensor([token_ids])
segment_tensor = torch.tensor([segment_ids])
with torch.no_grad():
outputs = model(token_tensor, segment_tensor)
encoded_layers = outputs[0]
# 对于每个词,计算它与种子词的相似度
for i in range(1, len(tokens)-1):
word = tokens[i]
if word in seed_words:
continue
word_tensor = encoded_layers[0][i].reshape(1, -1)
seed_tensors = seed_encoded_layers[0][0].reshape(1, -1) # 修改此处,取第一个元素
# 计算当前微博词汇与种子词的相似度
sim = cosine_similarity(word_tensor, seed_tensors, dense_output=False)[0].max()
print(sim, word)
if sim > 0.5 and len(word) > 1:
privacy_words.add(word)
print(privacy_words)
```
阅读全文