帮我用python写下ai换脸的代码
时间: 2023-08-27 16:10:52 浏览: 328
换脸技术需要使用到深度学习、计算机视觉等领域的知识和技术,实现起来比较复杂。以下是一个基于GAN的简单的换脸代码示例,需要使用到Python及相关的深度学习框架,如PyTorch或TensorFlow等。
```python
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from PIL import Image
import numpy as np
# 定义生成器和判别器的网络结构
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.encoder = nn.Sequential(
nn.Conv2d(3, 64, 4, stride=2, padding=1),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64, 128, 4, stride=2, padding=1),
nn.BatchNorm2d(128),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(128, 256, 4, stride=2, padding=1),
nn.BatchNorm2d(256),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(256, 512, 4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(512, 512, 4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(512, 512, 4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(512, 512, 4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2, inplace=True)
)
self.decoder = nn.Sequential(
nn.ConvTranspose2d(512, 512, 4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(True),
nn.ConvTranspose2d(512, 512, 4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(True),
nn.ConvTranspose2d(512, 512, 4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(True),
nn.ConvTranspose2d(512, 512, 4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(True),
nn.ConvTranspose2d(512, 256, 4, stride=2, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(True),
nn.ConvTranspose2d(256, 128, 4, stride=2, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(True),
nn.ConvTranspose2d(128, 64, 4, stride=2, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(True),
nn.ConvTranspose2d(64, 3, 4, stride=2, padding=1),
nn.Tanh()
)
def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(3, 64, 4, stride=2, padding=1),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64, 128, 4, stride=2, padding=1),
nn.BatchNorm2d(128),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(128, 256, 4, stride=2, padding=1),
nn.BatchNorm2d(256),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(256, 512, 4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(512, 1, 4, stride=1, padding=0),
nn.Sigmoid()
)
def forward(self, x):
x = self.conv(x)
return x.view(-1, 1)
# 定义训练函数
def train(generator, discriminator, data_loader, optimizer_g, optimizer_d, criterion):
for epoch in range(num_epochs):
for i, (input_img, target_img) in enumerate(data_loader):
# 训练生成器
optimizer_g.zero_grad()
fake_img = generator(input_img)
output = discriminator(fake_img)
loss_g = criterion(output, torch.ones(output.size(0), 1))
loss_g.backward()
optimizer_g.step()
# 训练判别器
optimizer_d.zero_grad()
real_output = discriminator(target_img)
fake_output = discriminator(fake_img.detach())
loss_d_real = criterion(real_output, torch.ones(real_output.size(0), 1))
loss_d_fake = criterion(fake_output, torch.zeros(fake_output.size(0), 1))
loss_d = (loss_d_real + loss_d_fake) / 2
loss_d.backward()
optimizer_d.step()
# 输出训练信息
if (i+1) % 10 == 0:
print('Epoch [{}/{}], Step [{}/{}], G_Loss: {:.4f}, D_Loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, len(data_loader), loss_g.item(), loss_d.item()))
# 图片预处理函数
def preprocess(img_path):
img = Image.open(img_path)
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
img = transform(img)
img = img.unsqueeze(0)
return img
# 定义训练数据集和测试数据集
train_dataset = ...
test_dataset = ...
# 定义超参数
num_epochs = 100
batch_size = 16
learning_rate_g = 0.0002
learning_rate_d = 0.0002
beta1 = 0.5
beta2 = 0.999
criterion = nn.BCELoss()
# 定义生成器、判别器和优化器
generator = Generator()
discriminator = Discriminator()
optimizer_g = torch.optim.Adam(generator.parameters(), lr=learning_rate_g, betas=(beta1, beta2))
optimizer_d = torch.optim.Adam(discriminator.parameters(), lr=learning_rate_d, betas=(beta1, beta2))
# 训练模型
train(generator, discriminator, train_dataset, optimizer_g, optimizer_d, criterion)
# 使用训练好的模型进行换脸
input_img = preprocess('input.jpg')
fake_img = generator(input_img)
fake_img = fake_img.squeeze(0)
fake_img = transforms.ToPILImage()(fake_img.detach().cpu())
fake_img.show()
```
以上代码实现的是基于GAN的换脸,具体的实现思路是将两张图片分别输入生成器和判别器,通过对抗训练的方式来不断优化生成器和判别器的参数,使得生成器可以生成与目标图片相似的图片。需要注意的是,这只是一个简单的代码示例,实际的换脸效果需要根据具体情况进行调整和优化。
阅读全文