用中文解释代码:Blue_y=zeros(y,1);%产生一个y*1的零阵,zeros功能是返回一个m×n×p×...的double类零矩阵 for i=1:y for j=1:x if(myI(i,j,1)==1) %如果myI(i,j,1)即myI的图像中坐标为(i,j)的点值为1,即该点为车牌背景颜色蓝色 %则Blue_y(i,1)的值加1 Blue_y(i,1)= Blue_y(i,1)+1;%蓝色像素点统计 end end end [temp MaxY]=max(Blue_y);
时间: 2024-04-19 21:26:53 浏览: 133
这段代码的作用是统计图像中蓝色像素点在每一行的数量,并记录最大值及其对应的行号。
首先,代码通过 `zeros(y,1)` 创建一个 y 行 1 列的全零矩阵 `Blue_y`,用来存储每一行蓝色像素点的数量。
然后,通过两个嵌套的 for 循环遍历图像的每个像素点。如果图像中坐标为 (i,j) 的点的红色通道值 `myI(i,j,1)` 为 1,即该点为蓝色,则将 `Blue_y(i,1)` 的值加 1,即统计蓝色像素点数量。
最后,使用 `[temp MaxY]=max(Blue_y)` 找到 `Blue_y` 中的最大值 `temp` 和对应的行号 `MaxY`。
相关问题
切割出图像 [y, x, z] = size(img7); img8 = double(img7); % 转成双精度浮点型 % 车牌的蓝色区域 % Y方向 blue_Y = zeros(y, 1); for i = 1:y for j = 1:x if(img8(i, j) == 1) % 判断车牌位置区域 blue_Y(i, 1) = blue_Y(i, 1) + 1; % 像素点统计 end end end % 找到Y坐标的最小值 img_Y1 = 1; while (blue_Y(img_Y1) < 5) && (img_Y1 < y) img_Y1 = img_Y1 + 1; end % 找到Y坐标的最大值 img_Y2 = y; while (blue_Y(img_Y2) < 5) && (img_Y2 > img_Y1) img_Y2 = img_Y2 - 1; end % x方向 blue_X = zeros(1, x); for j = 1:x for i = 1:y if(img8(i, j) == 1) % 判断车牌位置区域 blue_X(1, j) = blue_X(1, j) + 1; end end end % 找到x坐标的最小值 img_X1 = 1; while (blue_X(1, img_X1) < 5) && (img_X1 < x) img_X1 = img_X1 + 1; end % 找到x坐标的最小值 img_X2 = x; while (blue_X(1, img_X2) < 5) && (img_X2 > img_X1) img_X2 = img_X2 - 1; end % 对图像进行裁剪 img9 = img(img_Y1:img_Y2, img_X1:img_X2, :); figure('name', '定位剪切图像'); imshow(img9); title('定位剪切后的彩色车牌图像') % 保存提取出来的车牌图像 imwrite(img9, '车牌图像.jpg');
这段 MATLAB 代码是用于定位并切割出车牌图像的代码。其中,首先通过 size 函数获取图像的大小,然后将图像转换成双精度浮点型。接着,先在 Y 方向上遍历图像像素点,将车牌位置区域的像素点在 blue_Y 数组中进行统计。然后通过 while 循环找到 Y 坐标的最小值和最大值,以此来确定车牌在图像中的位置。
接着,在 X 方向上同样遍历图像像素点,将车牌位置区域的像素点在 blue_X 数组中进行统计。然后通过 while 循环找到 X 坐标的最小值和最大值,以此来确定车牌在图像中的位置。
最后,通过对图像进行裁剪,提取出车牌图像。通过 imshow 函数将提取出的车牌图像显示出来,并通过 imwrite 函数将其保存为文件。
# Save PointMap to pm_path. def SavePlyFile(self,pm_path, pm, image): width = pm.GetSize().width height = pm.GetSize().height pm_num = width * height pm_ptr = np.array(pm, copy=False).reshape((-1, 3)) image_ptr = np.array(image, copy=False) if image.GetType() == RVC.ImageTypeEnum.Mono8: tmp = image_ptr.copy().flatten() image_ptr = np.zeros((height * width, 3)) image_ptr[:, 0] = tmp image_ptr[:, 1] = tmp image_ptr[:, 2] = tmp else: image_ptr = image_ptr.reshape(-1, 3) if image.GetType() == RVC.ImageTypeEnum.BGR8: image_ptr[:, [0, 2]] = image_ptr[:, [2, 0]] data = np.concatenate((pm_ptr, image_ptr), axis=1) np.savetxt(pm_path, data, fmt = '%f %f %f %d %d %d') with open(pm_path, 'r+') as f: old = f.read() f.seek(0) f.write("{}".format("ply")) f.write("\n{}".format("format ascii 1.0")) f.write("\n{}".format("comment Created by Rvbust, Inc")) f.write("\nelement vertex {}".format(pm_num)) f.write("\n{}".format("property float x")) f.write("\n{}".format("property float y")) f.write("\n{}".format("property float z")) f.write("\n{}".format("property uchar red")) f.write("\n{}".format("property uchar green")) f.write("\n{}".format("property uchar blue")) f.write("\n{}\n".format("end_header")) f.write(old) f.close() return
这段代码是用来将一个 PointMap 和一张图片保存为一个 .ply 文件的函数。具体来说,它接受三个参数:pm_path 表示保存的路径,pm 表示 PointMap 对象,image 表示图片对象。
首先,它通过 pm.GetSize() 获取 PointMap 的宽高信息,计算出 PointMap 中点的数量。然后,它将 PointMap 转换为一个二维 numpy 数组 pm_ptr,将图片转换为一个三维 numpy 数组 image_ptr。
接下来,它根据图片的类型进行判断。如果是 Mono8 类型,表示图片是单通道灰度图像,那么它将其转换为一个三通道数组,其中三个通道的值都相等。如果是其他类型,那么就将其转换为一个二维的三通道数组,并将 BGR 通道顺序转换为 RGB。
最后,它将 pm_ptr 和 image_ptr 按列连接成一个大的 numpy 数组 data,并将其写入到 pm_path 指定的文件中。在写入之前,它先写入了一个 .ply 文件的头部信息,包括文件格式、版本、注释、点的数量和属性等。最后,它将原文件中的内容追加到新写入的内容之后,完成文件的保存。
阅读全文
相关推荐
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![doc](https://img-home.csdnimg.cn/images/20241231044833.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)