超图神经网络python代码
时间: 2023-09-02 21:07:31 浏览: 249
以下是一个简单的超图神经网络的Python代码示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class HyperGraphConv(nn.Module):
def __init__(self, in_features, out_features):
super(HyperGraphConv, self).__init__()
self.linear = nn.Linear(in_features, out_features)
def forward(self, x, edges):
edge_weights = torch.sum(edges, dim=1) # 汇总每个超边的权重
x = torch.matmul(edges.transpose(1, 2), x) # 超图传播
x = self.linear(x) # 线性变换
x = F.relu(x) # 激活函数
x = torch.matmul(edges, x) / edge_weights.unsqueeze(2) # 超图聚合
return x
class HyperGraphNet(nn.Module):
def __init__(self, in_features, hidden_features, out_features):
super(HyperGraphNet, self).__init__()
self.conv1 = HyperGraphConv(in_features, hidden_features)
self.conv2 = HyperGraphConv(hidden_features, out_features)
def forward(self, x, edges):
x = self.conv1(x, edges)
x = self.conv2(x, edges)
return x
# 示例使用
input_size = 32
hidden_size = 64
output_size = 10
x = torch.randn(16, input_size) # 输入特征向量
edges = torch.randn(16, 8, input_size) # 超边连接矩阵
model = HyperGraphNet(input_size, hidden_size, output_size)
output = model(x, edges)
print(output.size()) # 输出: torch.Size([16, 10])
```
以上示例代码实现了一个简单的超图神经网络,包含了超图卷积层(`HyperGraphConv`)和超图网络模型(`HyperGraphNet`)。在示例中,使用了输入特征向量 `x` 和超边连接矩阵 `edges` 进行前向传播,并输出最终的预测结果 `output`。注意,这只是一个简单的示例,实际应用中可能需要根据具体问题进行适当的修改和扩展。
阅读全文