Traceback (most recent call last): File "D:\university\python\work space\lib\site-packages\pandas\core\indexes\base.py", line 3653, in get_loc return self._engine.get_loc(casted_key) File "pandas\_libs\index.pyx", line 147, in pandas._libs.index.IndexEngine.get_loc File "pandas\_libs\index.pyx", line 176, in pandas._libs.index.IndexEngine.get_loc File "pandas\_libs\hashtable_class_helper.pxi", line 7080, in pandas._libs.hashtable.PyObjectHashTable.get_item File "pandas\_libs\hashtable_class_helper.pxi", line 7088, in pandas._libs.hashtable.PyObjectHashTable.get_item KeyError: 'message' The above exception was the direct cause of the following exception: Traceback (most recent call last): File "D:\university\python\workspace\tf1.py", line 104, in <module> result = processing_feature(file_name) File "D:\university\python\workspace\tf1.py", line 32, in processing_feature trace['message'] = trace['service_name'] + trace['message'] File "D:\university\python\work space\lib\site-packages\pandas\core\frame.py", line 3761, in __getitem__ indexer = self.columns.get_loc(key) File "D:\university\python\work space\lib\site-packages\pandas\core\indexes\base.py", line 3655, in get_loc raise KeyError(key) from err KeyError: 'message'
时间: 2023-08-02 12:04:48 浏览: 758
这个错误是由于在你的代码中,`trace` DataFrame 中没有名为 `'message'` 的列引起的。请确保你的数据中存在名为 `'message'` 的列,并且在使用之前正确加载了数据。
你可以通过检查数据文件或使用 `trace.columns` 来确认 DataFrame 中的列名。确保你的数据文件中包含了 `'message'` 列,并且在读取数据时没有发生错误。
如果你的数据确实没有 `'message'` 列,那么你需要根据实际情况调整代码,或者选择其他适合的列来替代 `'message'` 列。
相关问题
Traceback (most recent call last): File "E:\anaconda\lib\site-packages\pandas\core\indexes\range.py", line 385, in get_loc return self._range.index(new_key) ValueError: 0 is not in range The above exception was the direct cause of the following exception: Traceback (most recent call last): File "F:\pythonproject\ARIMA-GRACH\6.py", line 34, in <module> arima_pred = arima_result.forecast()[0][0] File "E:\anaconda\lib\site-packages\pandas\core\series.py", line 958, in __getitem__ return self._get_value(key) File "E:\anaconda\lib\site-packages\pandas\core\series.py", line 1069, in _get_value loc = self.index.get_loc(label) File "E:\anaconda\lib\site-packages\pandas\core\indexes\range.py", line 387, in get_loc raise KeyError(key) from err KeyError: 0
这个错误是由于 `test_ts` 的索引从0开始,而 `pd.Series([test_ts[i]], index=[test_ts.index[i]-1])` 中的 `index` 参数是从-1开始的,导致索引对不上。你可以将 `index` 参数修改为从0开始的,如下所示:
```
arima_result = arima_result.append(pd.Series([test_ts[i]], index=[test_ts.index[i]]))
garch_result = garch_result.append(pd.Series([arima_result.resid[-1]], index=[test_ts.index[i]]))
```
另外,如果你想要使用 ARIMA-GARCH 模型对时间序列进行预测,你还需要实现 GARCH 模型部分的代码。具体实现方式可以参考下面的代码:
```
from arch import arch_model
# 训练 GARCH 模型
garch_model = arch_model(train_ts, p=1, q=1)
garch_result = garch_model.fit(update_freq=5).forecast(horizon=len(test_ts), reindex=False)
arima_model = ARIMA(train_ts, order=(1, 1, 1))
arima_result = arima_model.fit()
pred_ts = []
for i in range(len(test_ts)):
# 预测ARIMA模型的下一个值
arima_pred = arima_result.forecast()[0][0]
# 使用GARCH模型计算方差
var = garch_result.forecast(horizon=1).variance.iloc[-1, 0]
# 计算标准差
std = np.sqrt(var)
# 计算置信区间
conf_int = (arima_pred - 1.96 * std, arima_pred + 1.96 * std)
# 将预测结果添加到列表中
pred_ts.append(arima_pred)
# 将预测结果添加到模型中
arima_result = arima_result.append(pd.Series([test_ts[i]], index=[test_ts.index[i]]))
garch_result = garch_result.append(pd.Series([arima_result.resid[-1]], index=[test_ts.index[i]]))
```
Traceback (most recent call last): File "D:\kelly\PycharmProjects\pythonProject8\收益率预测.py", line 119, in <module> n_out = np.sum(datafit['yearmonth'] > 20090101) File "D:\python3.10\lib\site-packages\pandas\core\frame.py", line 3807, in __getitem__ indexer = self.columns.get_loc(key) File "D:\python3.10\lib\site-packages\pandas\core\indexes\base.py", line 3804, in get_loc raise KeyError(key) from err KeyError: 'yearmonth'
这个错误的原因是你尝试在一个 pandas DataFrame 中访问不存在的列 'yearmonth'。'yearmonth' 列可能不存在于该 DataFrame 中,或者你错误地拼写了该列的名称。
你可以先检查 DataFrame 中是否存在 'yearmonth' 列,可以通过打印 DataFrame 的列名列表来检查:
```
print(datafit.columns)
```
或者可以通过使用 `in` 操作符来判断该列是否存在于 DataFrame 中:
```
if 'yearmonth' in datafit.columns:
n_out = np.sum(datafit['yearmonth'] > 20090101)
else:
print("Column 'yearmonth' does not exist in DataFrame.")
```
如果该列确实不存在,你需要检查代码中的数据源是否正确,并确保列名拼写正确。
阅读全文