s t m 32循迹小车上的超声波的代码怎么写

时间: 2024-02-29 20:51:38 浏览: 18
以下是使用STM32 HAL库编写STM32循迹小车上超声波测距的示例代码: ``` #include "main.h" #include "stm32f1xx_hal.h" #define TRIG_PIN GPIO_PIN_0 #define TRIG_PORT GPIOA #define ECHO_PIN GPIO_PIN_1 #define ECHO_PORT GPIOA TIM_HandleTypeDef htim2; void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_TIM2_Init(void); void delay_us(uint16_t us); int main(void) { HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); MX_TIM2_Init(); HAL_TIM_Base_Start(&htim2); while (1) { uint32_t start, end, pulse_width, distance; HAL_GPIO_WritePin(TRIG_PORT, TRIG_PIN, GPIO_PIN_RESET); delay_us(2); HAL_GPIO_WritePin(TRIG_PORT, TRIG_PIN, GPIO_PIN_SET); delay_us(10); HAL_GPIO_WritePin(TRIG_PORT, TRIG_PIN, GPIO_PIN_RESET); while (!HAL_GPIO_ReadPin(ECHO_PORT, ECHO_PIN)); start = __HAL_TIM_GET_COUNTER(&htim2); while (HAL_GPIO_ReadPin(ECHO_PORT, ECHO_PIN)); end = __HAL_TIM_GET_COUNTER(&htim2); pulse_width = end - start; distance = pulse_width * 17 / 1000; // 将距离信息用UART发送出去或者控制小车的运动方向 } } void delay_us(uint16_t us) { __HAL_TIM_SET_COUNTER(&htim2, 0); while (__HAL_TIM_GET_COUNTER(&htim2) < us); } void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) { Error_Handler(); } } static void MX_TIM2_Init(void) { TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; htim2.Instance = TIM2; htim2.Init.Prescaler = (SystemCoreClock / 1000000) - 1; htim2.Init.CounterMode = TIM_COUNTERMODE_UP; htim2.Init.Period = 0xFFFFFFFF; if (HAL_TIM_Base_Init(&htim2) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK) { Error_Handler(); } } static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; __HAL_RCC_GPIOA_CLK_ENABLE(); GPIO_InitStruct.Pin = TRIG_PIN; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; HAL_GPIO_Init(TRIG_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = ECHO_PIN; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(ECHO_PORT, &GPIO_InitStruct); } ``` 在这个示例代码中,我们使用了STM32的TIM2定时器来计算超声波的发射和接收时间。首先通过MX_GPIO_Init函数初始化超声波模块的TRIG和ECHO引脚,然后通过MX_TIM2_Init函数初始化TIM2定时器。在主函数中,我们不断循环测量超声波模块与前方障碍物的距离,并将距离信息通过UART发送出去或者控制小车的运动方向。 在测量距离的过程中,我们首先将TRIG引脚拉低至少10微秒,然后再拉高至少10微秒,以触发超声波的发射。然后等待ECHO引脚的高低电平变化,并记录下变化前后TIM2定时器的计数值,即可计算出超声波的发射和接收时间,从而得到与前方障碍物的距离。需要注意的是,在计算距离时,我们将计算结果乘以17,以将微秒转换为厘米。

相关推荐

最新推荐

recommend-type

STM32实现智能小车电磁循迹

大学项目 用32单片机编写程序 通过铜制感应线圈对电流的磁通量测量,获取道路信息
recommend-type

基于STM32的循迹往返小车设计

智能车辆作为智能交通系统的关键技术之一,是许多高新技术综合集成的载体。它体现了车辆工程、人工...本文提出了一个基于STM32F103芯片为控制核心,附以红外传感器采集外界信息和检测障碍物的智能小车系统设计方案。
recommend-type

用STC12C5A60S2的智能循迹小车

本设计中的智能循迹小车,采用 TRCT5000 红外传感器为循迹模块,单片机 STC12C5A60S2 为控制模块,L298N 为电机驱动模块,LM2940 为电源模块。
recommend-type

51单片机红外四路循迹小车程序

循迹小车,随着电力电子器件的发展,PWM电压型逆变器在交流变频调速、UPS、电能质量控制器、轻型直流输电换流器等电力电子装置中得到了越来越广泛的应用。PWM电压型逆变器直流侧所需的理想无脉动直流电压源通常通过...
recommend-type

一种基于51单片机的智能循迹小车代码

该代码是基于51单片机单片机编写,可以实现小车的左转,右转等,从而可以实现循迹功能。目前此代码已在智能小车上得到应用。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用 Python 画一个可以动的爱心

好的,我可以帮助您使用Python来绘制一个动态的爱心。您可以使用turtle库来实现。以下是实现代码: ```python import turtle import math # 设置画布和画笔 canvas = turtle.Screen() canvas.bgcolor("black") pencil = turtle.Turtle() pencil.speed(0) pencil.color("red", "pink") pencil.pensize(3) # 定义爱心函数 def draw_love(heart_size, x_offset=0, y_offset=0):
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。