优化这段代码 mean_values = df[cols].mean(axis=1) df[cols] = df[cols].fillna(mean_values, axis=0) df.to_csv('new_csv_file.csv', index=False)
时间: 2024-02-07 21:01:52 浏览: 100
这段代码可以进行如下优化:
```
# 计算均值并填充缺失值
df[cols] = df[cols].fillna(df[cols].mean())
# 保存为 CSV 文件
df.to_csv('new_csv_file.csv', index=False)
```
这里我们可以使用 `df[cols].mean()` 直接计算出每一列的均值,然后使用 `fillna()` 方法进行缺失值填充。同时,我们可以将 `axis=0` 参数省略,因为这是 `fillna()` 方法的默认值。最后,我们可以将 `index=False` 参数传递给 `to_csv()` 方法,以避免将索引列写入文件中。
相关问题
写一个c函数复现以下代码 # 求每一列的均值 col_mean = np.mean(temp_arr, axis=0) # 每个元素减去所在列的均值 temp_arr = (temp_arr - col_mean).astype(int) n_largest = max_min_num n_smallest = max_min_num max_values = np.apply_along_axis(lambda x: np.sort(x)[-n_largest:], axis=0, arr=temp_arr) min_values = np.apply_along_axis(lambda x: np.sort(x)[:n_smallest], axis=0, arr=temp_arr) max_mean = np.mean(max_values, axis=0).astype(int) min_mean = np.abs(np.mean(min_values, axis=0)).astype(int) mean = (max_mean + min_mean) // 2
以下是复现上述代码功能的C函数:
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
void compute_mean(int rows, int cols, int temp_arr[rows][cols], int max_min_num) {
int col_mean[cols];
int i, j, k;
int n_largest = max_min_num;
int n_smallest = max_min_num;
int max_values[cols][n_largest];
int min_values[cols][n_smallest];
int max_mean[cols];
int min_mean[cols];
int mean[cols];
// 求每一列的均值
for (j = 0; j < cols; j++) {
int sum = 0;
for (i = 0; i < rows; i++) {
sum += temp_arr[i][j];
}
col_mean[j] = round(1.0 * sum / rows);
}
// 每个元素减去所在列的均值
for (i = 0; i < rows; i++) {
for (j = 0; j < cols; j++) {
temp_arr[i][j] -= col_mean[j];
}
}
// 求每列的最大值
for (j = 0; j < cols; j++) {
for (i = 0; i < rows; i++) {
int val = temp_arr[i][j];
for (k = 0; k < n_largest; k++) {
if (k == 0 || val > max_values[j][k-1]) {
max_values[j][k] = val;
break;
}
}
}
}
// 求每列的最小值
for (j = 0; j < cols; j++) {
for (i = 0; i < rows; i++) {
int val = temp_arr[i][j];
for (k = 0; k < n_smallest; k++) {
if (k == 0 || val < min_values[j][k-1]) {
min_values[j][k] = val;
break;
}
}
}
}
// 求每列最大值的均值
for (j = 0; j < cols; j++) {
int sum = 0;
for (k = 0; k < n_largest; k++) {
sum += max_values[j][k];
}
max_mean[j] = round(1.0 * sum / n_largest);
}
// 求每列最小值的均值的绝对值
for (j = 0; j < cols; j++) {
int sum = 0;
for (k = 0; k < n_smallest; k++) {
sum += min_values[j][k];
}
min_mean[j] = round(fabs(1.0 * sum / n_smallest));
}
// 求每列最大值均值和最小值均值的平均值
for (j = 0; j < cols; j++) {
mean[j] = round(0.5 * (max_mean[j] + min_mean[j]));
}
// 输出结果
printf("col_mean: ");
for (j = 0; j < cols; j++) {
printf("%d ", col_mean[j]);
}
printf("\n");
printf("max_values: ");
for (j = 0; j < cols; j++) {
printf("[ ");
for (k = 0; k < n_largest; k++) {
printf("%d ", max_values[j][k]);
}
printf("] ");
}
printf("\n");
printf("min_values: ");
for (j = 0; j < cols; j++) {
printf("[ ");
for (k = 0; k < n_smallest; k++) {
printf("%d ", min_values[j][k]);
}
printf("] ");
}
printf("\n");
printf("max_mean: ");
for (j = 0; j < cols; j++) {
printf("%d ", max_mean[j]);
}
printf("\n");
printf("min_mean: ");
for (j = 0; j < cols; j++) {
printf("%d ", min_mean[j]);
}
printf("\n");
printf("mean: ");
for (j = 0; j < cols; j++) {
printf("%d ", mean[j]);
}
printf("\n");
}
```
假设输入的数据存储在一个二维数组 `temp_arr` 中,其大小为 `rows` 行 `cols` 列。函数的第二个参数 `max_min_num` 表示求每列的最大值和最小值时,分别选取的个数。函数会依次输出 `col_mean`,`max_values`,`min_values`,`max_mean`,`min_mean` 和 `mean`,分别对应上述代码中的变量。
请详细解释一下这段代码,每一句给上相应的详细注解:sub['t'] = 0 submission = [] for f in test: df = pd.read_csv(f) df.set_index('Time', drop=True, inplace=True) df['Id'] = f.split('/')[-1].split('.')[0] # df = df.fillna(0).reset_index(drop=True) df['Time_frac']=(df.index/df.index.max()).values#currently the index of data is actually "Time" df = pd.merge(df, tasks[['Id','t_kmeans']], how='left', on='Id').fillna(-1) # df = pd.merge(df, subjects[['Id','s_kmeans']], how='left', on='Id').fillna(-1) df = pd.merge(df, metadata_complex[['Id','Subject']+['Visit','Test','Medication','s_kmeans']], how='left', on='Id').fillna(-1) df_feats = fc.calculate(df, return_df=True, include_final_window=True, approve_sparsity=True, window_idx="begin") df = df.merge(df_feats, how="left", left_index=True, right_index=True) df.fillna(method="ffill", inplace=True) # res = pd.DataFrame(np.round(reg.predict(df[cols]).clip(0.0,1.0),3), columns=pcols) res_vals=[] for i_fold in range(N_FOLDS): res_val=np.round(regs[i_fold].predict(df[cols]).clip(0.0,1.0),3) res_vals.append(np.expand_dims(res_val,axis=2)) res_vals=np.mean(np.concatenate(res_vals,axis=2),axis=2) res = pd.DataFrame(res_vals, columns=pcols) df = pd.concat([df,res], axis=1) df['Id'] = df['Id'].astype(str) + '_' + df.index.astype(str) submission.append(df[scols]) submission = pd.concat(submission) submission = pd.merge(sub[['Id']], submission, how='left', on='Id').fillna(0.0) submission[scols].to_csv('submission.csv', index=False)
这段代码的作用是生成一个提交文件(submission.csv),其中包含了对一组测试数据进行预测的结果。下面是每一句代码的详细注解:
```
sub['t'] = 0
```
在这一行代码中,创建了一个名为sub的pandas DataFrame对象,并且给其增加了一个名为t的列,初始值为0。
```
submission = []
```
这一行代码创建一个空列表submission。
```
for f in test:
df = pd.read_csv(f)
df.set_index('Time', drop=True, inplace=True)
df['Id'] = f.split('/')[-1].split('.')[0]
df = df.fillna(0).reset_index(drop=True)
df['Time_frac']=(df.index/df.index.max()).values
df = pd.merge(df, tasks[['Id','t_kmeans']], how='left', on='Id').fillna(-1)
df = pd.merge(df, subjects[['Id','s_kmeans']], how='left', on='Id').fillna(-1)
df = pd.merge(df, metadata_complex[['Id','Subject']+['Visit','Test','Medication','s_kmeans']], how='left', on='Id').fillna(-1)
```
这一段代码是对测试数据进行预处理,包括读取CSV文件、设置索引、填充缺失值、添加新的列、合并多个数据框等。
```
df_feats = fc.calculate(df, return_df=True, include_final_window=True, approve_sparsity=True, window_idx="begin")
df = df.merge(df_feats, how="left", left_index=True, right_index=True)
df.fillna(method="ffill", inplace=True)
```
这里是调用了fc.calculate函数,对测试数据进行特征提取,并将结果合并到原始数据框df中。
```
res_vals=[]
for i_fold in range(N_FOLDS):
res_val=np.round(regs[i_fold].predict(df[cols]).clip(0.0,1.0),3)
res_vals.append(np.expand_dims(res_val,axis=2))
res_vals=np.mean(np.concatenate(res_vals,axis=2),axis=2)
res = pd.DataFrame(res_vals, columns=pcols)
```
这一段代码是对测试数据进行预测,包括调用预训练的模型在测试数据上进行预测,并将结果保存在一个名为res的pandas DataFrame对象中。
```
df = pd.concat([df,res], axis=1)
df['Id'] = df['Id'].astype(str) + '_' + df.index.astype(str)
submission.append(df[scols])
```
这里将预测结果与测试数据框合并,并且将Id列和索引列组合成一个新的Id列,最后将预测结果保存到submission列表中。
```
submission = pd.concat(submission)
submission = pd.merge(sub[['Id']], submission, how='left', on='Id').fillna(0.0)
submission[scols].to_csv('submission.csv', index=False)
```
这里将所有测试数据的预测结果合并成一个pandas DataFrame对象,再与之前创建的sub对象合并,最后将最终的预测结果保存到submission.csv文件中。
阅读全文