请基于华为云的云主机服务实验环境,回答以下问题:是否可以修改MapReduce任务,使之完成多个文档的TF-iDF计算?若是,请提交修改后的程序并说明计算步骤。若否,请说明原因
时间: 2024-06-11 15:04:15 浏览: 65
华为云MapREduce Service 3.2产品文档
是的,可以修改MapReduce任务,使之完成多个文档的TF-iDF计算。
以下是修改后的程序:
Mapper:
```
public static class TFIDFMapper extends Mapper<LongWritable, Text, Text, Text> {
private final static Text word = new Text();
private final static Text document = new Text();
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
String[] tokens = line.split(",");
String documentName = tokens[0];
String wordValue = tokens[1];
String wordCount = tokens[2];
word.set(wordValue);
document.set(documentName + "=" + wordCount);
context.write(word, document);
}
}
```
Reducer:
```
public static class TFIDFReducer extends Reducer<Text, Text, Text, Text> {
private final static Text word = new Text();
public void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
int numberOfDocumentsInCorpus = context.getConfiguration().getInt("numberOfDocumentsInCorpus", 1);
int numberOfDocumentsContainingKey = 0;
Map<String, Integer> documents = new HashMap<String, Integer>();
for (Text value : values) {
String[] documentAndCount = value.toString().split("=");
String documentName = documentAndCount[0];
int count = Integer.parseInt(documentAndCount[1]);
numberOfDocumentsContainingKey++;
documents.put(documentName, count);
}
double idf = Math.log10((double) numberOfDocumentsInCorpus / (double) numberOfDocumentsContainingKey);
StringBuilder documentAndTFIDF = new StringBuilder();
for (String documentName : documents.keySet()) {
int count = documents.get(documentName);
double tf = (double) count / (double) getTotalNumberOfWordsInDocument(documentName, context);
double tfidf = tf * idf;
documentAndTFIDF.append(documentName).append("=").append(tfidf).append("\t");
}
word.set(key);
context.write(word, new Text(documentAndTFIDF.toString()));
}
private int getTotalNumberOfWordsInDocument(String documentName, Context context) throws IOException {
Path[] inputPaths = context.getInputPaths();
for (Path inputPath : inputPaths) {
FileSystem fileSystem = inputPath.getFileSystem(context.getConfiguration());
Path filePath = new Path(inputPath, documentName);
if (fileSystem.exists(filePath)) {
FSDataInputStream inputStream = fileSystem.open(filePath);
BufferedReader reader = new BufferedReader(new InputStreamReader(inputStream));
String line;
int count = 0;
while ((line = reader.readLine()) != null) {
count += line.split(" ").length;
}
reader.close();
return count;
}
}
return 1;
}
}
```
在修改后的程序中,Mapper将每个文档中的单词与其出现次数映射到键值对中,键为单词,值为文档名和出现次数。Reducer计算TF-IDF,将每个文档及其TF-IDF值作为字符串追加到StringBuilder中,最后以单词为键,文档名和TF-IDF字符串为值写入输出。
需要注意的是,需要在运行作业之前将所有文档存储在HDFS中,并在作业运行时将它们作为输入路径提供给作业。
修改后的程序计算步骤如下:
1. Mapper将每个文档中的单词与其出现次数映射到键值对中,键为单词,值为文档名和出现次数。
2. Reducer遍历每个键,并计算TF-IDF值。
3. 对于每个键,Reducer遍历其所有值,并将每个值解析为文档名和出现次数。
4. Reducer计算文档中每个单词的TF-IDF值,并将文档名和TF-IDF值作为字符串追加到StringBuilder中。
5. 对于每个键,Reducer以单词为键,文档名和TF-IDF字符串为值写入输出。
阅读全文