请不使用Biopython
时间: 2024-10-08 21:00:46 浏览: 19
如果你不想使用 Biopython,我们也可以手写一个简单的算法来计算蛋白质序列的局部对齐得分,比如 Smith-Waterman 算法。这个算法会考虑每个位置的匹配、插入和删除操作,以及BLOSUM62矩阵的值。
首先,你需要手动创建BLOSUM62矩阵,然后实现核心的Smith-Waterman函数。这里是一个基本的框架示例:
```python
# 假设你有一个预先加载好的BLOSUM62矩阵,或者从网上下载数据自行构建
BLOSUM62 = ... # 你需要填充具体的矩阵数据
# 定义函数计算得分
def match_score(a, b, matrix=BLOSUM62):
if a == b:
return matrix[a, b]
else:
return 0
def insertion_score(gap_penalty):
return gap_penalty
def deletion_score(gap_penalty):
return gap_penalty
def smith_waterman(seq1, seq2, gap_penalty=-11, extend_gap_penalty=-1):
m, n = len(seq1) + 1, len(seq2) + 1
dp = [[0] * n for _ in range(m)]
traceback = [[''] * n for _ in range(m)]
for i in range(1, m):
dp[i][0] = i * deletion_score(gap_penalty)
traceback[i][0] = 'D'
for j in range(1, n):
dp[0][j] = j * insertion_score(gap_penalty)
traceback[0][j] = 'I'
for i in range(1, m):
for j in range(1, n):
match = dp[i-1][j-1] + match_score(seq1[i-1], seq2[j-1])
delete = dp[i][j-1] + deletion_score(gap_penalty)
insert = dp[i-1][j] + insertion_score(gap_penalty)
max_score = max(match, delete, insert)
best_move = 'M' if match == max_score else ['D', 'I'][match < max_score]
dp[i][j] = max_score
traceback[i][j] = best_move
alignment_score = dp[-1][-1]
aligned_seq1, aligned_seq2 = '', ''
i, j = m - 1, n - 1
while i > 0 and j > 0:
if traceback[i][j] == 'M':
aligned_seq1 += seq1[i-1]
aligned_seq2 += seq2[j-1]
i -= 1
j -= 1
elif traceback[i][j] == 'D':
aligned_seq1 += '-'
i -= 1
else:
aligned_seq2 += '-'
j -= 1
return aligned_seq1[::-1], aligned_seq2[::-1], alignment_score
# 示例用法
seq1 = "YOUR_PROTEIN_SEQ_1"
seq2 = "YOUR_PROTEIN_SEQ_2"
alignment, score = smith_waterman(seq1, seq2)
print(f"Alignment: {alignment}")
print(f"Score: {score}")
```
阅读全文