print("\t", len(set(self.data.ddi_edge_classes.numpy())), "cell-lines")解释一下

时间: 2023-06-19 22:03:19 浏览: 96
这段代码是 Python 语言中使用的打印函数,其作用是输出一段文本以及变量 `len(set(self.data.ddi_edge_classes.numpy()))` 的值。 在这段代码中,`\t` 表示制表符,用于使输出的文本向右缩进一个Tab的距离;`len()` 函数用于获取一个序列对象的长度;`set()` 函数用于将一个序列对象转换成一个不包含重复元素的集合对象;`self.data.ddi_edge_classes.numpy()` 返回一个包含 DDI 边缘类别的 Numpy 数组。因此,`len(set(self.data.ddi_edge_classes.numpy()))` 的作用是计算 DDI 边缘类别的数量,将其转换成集合对象去除重复元素后再计算其长度。 最终,这段代码会输出一个以制表符开头的文本,表示 DDI 边缘类别的数量以及单元格的数量。
相关问题

g_data = { ('drug', 'interacts', 'drug'): (ddi_idxs_ndarray[0], ddi_idxs_ndarray[1]), ('drug', 'interacts_reverse', 'drug'): (ddi_idxs_ndarray[1], ddi_idxs_ndarray[0]), ('protein', 'acts_on', 'drug'): (drug_with_protein[1], drug_with_protein[0]), } g = dgl.heterograph(g_data)为一个DGL异质图,请写一个SAGEConv模型,对异质图进行采样和聚合

下面是一个使用SAGEConv模型对异质图进行采样和聚合的示例代码: ```python import dgl import torch import torch.nn as nn import dgl.function as fn from dgl.nn.pytorch import SAGEConv class SAGEModel(nn.Module): def __init__(self, in_feats, hidden_feats, out_feats): super().__init__() self.conv1 = SAGEConv(in_feats, hidden_feats, 'mean') self.conv2 = SAGEConv(hidden_feats, out_feats, 'mean') def forward(self, g, inputs): h = inputs h = self.conv1(g, h) h = nn.ReLU()(h) h = self.conv2(g, h) return h # 假设输入特征的维度为64,中间层维度为128,输出维度为32 in_feats, hidden_feats, out_feats = 64, 128, 32 # 创建异质图 g_data = {('drug', 'interacts', 'drug'): (ddi_idxs_ndarray[0], ddi_idxs_ndarray[1]), ('drug', 'interacts_reverse', 'drug'): (ddi_idxs_ndarray[1], ddi_idxs_ndarray[0]), ('protein', 'acts_on', 'drug'): (drug_with_protein[1], drug_with_protein[0])} g = dgl.heterograph(g_data) # 创建输入特征 inputs = {'drug': torch.randn(g.number_of_nodes('drug'), in_feats), 'protein': torch.randn(g.number_of_nodes('protein'), in_feats)} # 创建SAGE模型 model = SAGEModel(in_feats, hidden_feats, out_feats) # 对异质图进行采样和聚合 h = model(g, inputs) ``` 该示例代码中使用了两层SAGEConv模型,其中第一层的输入特征为64维,输出特征为128维,第二层的输入特征为128维,输出特征为32维。在模型的forward函数中,首先对输入特征进行第一层采样和聚合,然后使用ReLU激活函数进行非线性变换,最后对结果进行第二层采样和聚合。最终得到的特征表示h可以用于下游任务,例如节点分类或链接预测。

现在我有三张DGL异质图,train_g_data = { ('drug', 'interacts', 'drug'): (train_edge_idx[0], train_edge_idx[1]), ('drug', 'interacts_reverse', 'drug'): (train_edge_idx[1], train_edge_idx[0]), ('drug', 'acts_on', 'protein'): (drug_protein[0], drug_protein[1]), } train_g = dgl.heterograph(train_g_data),val_g和test_g也是类似的结构,图的特征也已经添加,请你用python写一段代码,用DGL中的graphSAGE模型训练,用以预测interacts的属性DDI_feat即药物相互作用分数,这是一个回归任务,并解释一下原理

首先,需要导入相关的库,包括DGL和PyTorch: ``` import dgl import torch import torch.nn as nn import dgl.function as fn from dgl.nn.pytorch import GraphConv, GATConv ``` 接下来就可以定义GraphSAGE模型了: ``` class GraphSAGE(nn.Module): def __init__(self, in_feats, out_feats, n_layers, activation, aggregator_type): super(GraphSAGE, self).__init__() self.n_layers = n_layers self.activation = activation self.layers = nn.ModuleList() self.aggregator_type = aggregator_type # input layer self.layers.append(GraphConv(in_feats, out_feats, aggregator_type=self.aggregator_type)) # hidden layers for i in range(1, n_layers): self.layers.append(GraphConv(out_feats, out_feats, aggregator_type=self.aggregator_type)) def forward(self, blocks, x): h = x for l, (layer, block) in enumerate(zip(self.layers, blocks)): h_dst = h[:block.number_of_dst_nodes()] h = layer(block, (h, h_dst)) if l != self.n_layers - 1: h = self.activation(h) return h ``` 这里我们定义了一个GraphSAGE类,包含输入特征的维度、输出特征的维度、隐藏层的数量、激活函数以及aggregator类型。在初始化函数中,我们定义了一个ModuleList,包含了所有的图卷积层。第一层的输入维度为in_feats,输出维度为out_feats,aggregator类型为我们在定义图时指定的类型;其他的隐藏层的输入和输出维度都为out_feats。 在forward函数中,我们首先将输入特征x赋值给h,然后依次对每一层进行计算。对于每一层,我们先将h切分成两部分,分别对应于当前block中的源节点和目标节点。然后对切分后的h进行图卷积操作,并将结果再次赋值给h。如果当前不是最后一层,我们还需要对h进行激活函数的处理。最后返回最后一层的结果h。 接下来,我们可以定义训练函数,包括数据加载、模型训练、模型评估等步骤: ``` def train(model, optimizer, loss_fn, train_loader, val_loader, device, epochs): best_val_loss = float('inf') best_model = None for epoch in range(epochs): model.train() train_loss = 0 for batch, data in enumerate(train_loader): subgraph, features, labels = data features = features.to(device) labels = labels.to(device) blocks = dgl.to_block(subgraph, subgraph.nodes()) output = model(blocks, features) loss = loss_fn(output.squeeze(), labels.float()) optimizer.zero_grad() loss.backward() optimizer.step() train_loss += loss.item() train_loss /= (batch + 1) val_loss = evaluate(model, loss_fn, val_loader, device) print('Epoch {:d} | Train Loss {:.4f} | Val Loss {:.4f}'.format(epoch+1, train_loss, val_loss)) if val_loss < best_val_loss: best_val_loss = val_loss best_model = model return best_model def evaluate(model, loss_fn, loader, device): model.eval() loss = 0 with torch.no_grad(): for batch, data in enumerate(loader): subgraph, features, labels = data features = features.to(device) labels = labels.to(device) blocks = dgl.to_block(subgraph, subgraph.nodes()) output = model(blocks, features) loss += loss_fn(output.squeeze(), labels.float()).item() return loss / (batch + 1) ``` 在训练函数中,我们首先定义了一个best_val_loss变量,用于记录最好的验证集误差和对应的模型。然后对于每个epoch,我们首先将模型设置为训练模式,然后遍历所有的训练数据,对于每个batch,我们首先将数据转移到设备上,然后将子图、特征和标签分别赋值给subgraph、features和labels变量。接下来,我们使用model对blocks和features进行计算,并计算loss。将梯度清零,执行反向传播和参数更新操作。最后,将该batch的loss加入train_loss中,并计算平均train_loss。 在每个epoch结束时,我们调用evaluate函数对模型进行验证集上的评估。在evaluate函数中,我们首先将模型设置为评估模式,然后遍历所有的验证数据,对于每个batch,我们首先将数据转移到设备上,然后将子图、特征和标签分别赋值给subgraph、features和labels变量。接下来,我们使用model对blocks和features进行计算,并计算loss。最后,将该batch的loss加入loss中,并计算平均loss。 接下来,我们可以加载数据集并进行训练: ``` from dgl.data.utils import load_graphs, save_graphs train_g, val_g, test_g = load_graphs('data.dgl') train_loader = dgl.dataloading.EdgeDataLoader(train_g, 'train', batch_size=1024, shuffle=True, drop_last=False) val_loader = dgl.dataloading.EdgeDataLoader(val_g, 'val', batch_size=1024, shuffle=False, drop_last=False) test_loader = dgl.dataloading.EdgeDataLoader(test_g, 'test', batch_size=1024, shuffle=False, drop_last=False) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = GraphSAGE(256, 1, 2, nn.ReLU(), 'mean').to(device) optimizer = torch.optim.Adam(model.parameters(), lr=0.01) loss_fn = nn.MSELoss() best_model = train(model, optimizer, loss_fn, train_loader, val_loader, device, epochs=100) test_loss = evaluate(best_model, loss_fn, test_loader, device) print('Test Loss {:.4f}'.format(test_loss)) ``` 在加载数据集时,我们使用load_graphs函数从指定路径加载三张图,分别对应于训练集、验证集和测试集。接下来,我们使用EdgeDataLoader对训练集、验证集和测试集进行数据加载。我们使用cuda进行训练,如果不可用则使用cpu。接下来,我们定义了一个GraphSAGE模型,优化器和损失函数。然后调用train函数进行训练,并使用evaluate函数在测试集上进行评估。最后输出测试集的loss。 GraphSAGE模型的原理是通过对每个节点的邻居节点进行聚合,来生成每个节点的特征表示。在模型训练中,我们首先将每个子图切分成源节点和目标节点,然后对源节点和目标节点分别进行图卷积操作,得到它们的特征表示。接下来,我们对源节点和目标节点进行聚合,得到每个节点的邻居节点的特征表示。最后,我们将源节点和目标节点进行拼接,并将结果传递给下一层进行计算。在每一层中,我们还可以使用不同的聚合方式,例如mean、max或LSTM等。
阅读全文

相关推荐

最新推荐

recommend-type

1-DDI0487A_a_2_armv8_arm_arch_reference_manual.pdf

该手册属于ARM的datasheet系列,是理解、开发和优化基于ARMv8架构处理器软件和硬件的重要参考资料。 手册涵盖了ARMv8-A架构的基础知识,包括处理器的寄存器结构、指令集、内存管理、异常处理、中断系统、虚拟化支持...
recommend-type

Windows api.pdf

例如,Audio Devices DDI Reference、Bluetooth Devices Reference等,专门针对音频设备和蓝牙设备的驱动开发。 四、Networking & Communication Windows API提供了广泛的网络和通信支持,如Dynamic Host ...
recommend-type

Thinkpad T440 T440S 主板原理图

* DDI-VGA 转换器:将数字信号转换为模拟信号,输出到 VGA 接口。 * DisplayPort 连接器:提供了数字信号输出,支持高分辨率和高速数据传输。 * N14M-GE 图形处理单元:NVIDIA GeForce GT 720M 图形处理单元,提供了...
recommend-type

WebAudioAPIError(解决方案).md

项目中常见的问题,记录一下解决方案
recommend-type

MATLAB实现小波阈值去噪:Visushrink硬软算法对比

资源摘要信息:"本资源提供了一套基于MATLAB实现的小波阈值去噪算法代码。用户可以通过运行主文件"project.m"来执行该去噪算法,并观察到对一张256x256像素的黑白“莱娜”图片进行去噪的全过程。此算法包括了添加AWGN(加性高斯白噪声)的过程,并展示了通过Visushrink硬阈值和软阈值方法对图像去噪的对比结果。此外,该实现还包括了对图像信噪比(SNR)的计算以及将噪声图像和去噪后的图像的打印输出。Visushrink算法的参考代码由M.Kiran Kumar提供,可以在Mathworks网站上找到。去噪过程中涉及到的Lipschitz指数计算,是基于Venkatakrishnan等人的研究,使用小波变换模量极大值(WTMM)的方法来测量。" 知识点详细说明: 1. MATLAB环境使用:本代码要求用户在MATLAB环境下运行。MATLAB是一种高性能的数值计算和可视化环境,广泛应用于工程计算、算法开发和数据分析等领域。 2. 小波阈值去噪:小波去噪是信号处理中的一个技术,用于从信号中去除噪声。该技术利用小波变换将信号分解到不同尺度的子带,然后根据信号与噪声在小波域中的特性差异,通过设置阈值来消除或减少噪声成分。 3. Visushrink算法:Visushrink算法是一种小波阈值去噪方法,由Donoho和Johnstone提出。该算法的硬阈值和软阈值是两种不同的阈值处理策略,硬阈值会将小波系数小于阈值的部分置零,而软阈值则会将这部分系数缩减到零。硬阈值去噪后的信号可能有更多震荡,而软阈值去噪后的信号更为平滑。 4. AWGN(加性高斯白噪声)添加:在模拟真实信号处理场景时,通常需要对原始信号添加噪声。AWGN是一种常见且广泛使用的噪声模型,它假设噪声是均值为零、方差为N0/2的高斯分布,并且与信号不相关。 5. 图像处理:该实现包含了图像处理的相关知识,包括图像的读取、显示和噪声添加。此外,还涉及了图像去噪前后视觉效果的对比展示。 6. 信噪比(SNR)计算:信噪比是衡量信号质量的一个重要指标,反映了信号中有效信息与噪声的比例。在图像去噪的过程中,通常会计算并比较去噪前后图像的SNR值,以评估去噪效果。 7. Lipschitz指数计算:Lipschitz指数是衡量信号局部变化复杂性的一个量度,通常用于描述信号在某个尺度下的变化规律。在小波去噪过程中,Lipschitz指数可用于确定是否保留某个小波系数,因为它与信号的奇异性相关联。 8. WTMM(小波变换模量极大值):小波变换模量极大值方法是一种小波分析技术,用于检测信号中的奇异点或边缘。该技术通过寻找小波系数模量极大值的变化来推断信号的局部特征。 9. 系统开源:该资源被标记为“系统开源”,意味着该MATLAB代码及其相关文件是可以公开访问和自由使用的。开源资源为研究人员和开发者提供了学习和实验的机会,有助于知识共享和技术发展。 资源的文件结构包括"Wavelet-Based-Denoising-MATLAB-Code-master",表明用户获取的是一套完整的项目文件夹,其中包含了执行小波去噪算法所需的所有相关文件和脚本。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【交互特征的影响】:分类问题中的深入探讨,如何正确应用交互特征

![【交互特征的影响】:分类问题中的深入探讨,如何正确应用交互特征](https://img-blog.csdnimg.cn/img_convert/21b6bb90fa40d2020de35150fc359908.png) # 1. 交互特征在分类问题中的重要性 在当今的机器学习领域,分类问题一直占据着核心地位。理解并有效利用数据中的交互特征对于提高分类模型的性能至关重要。本章将介绍交互特征在分类问题中的基础重要性,以及为什么它们在现代数据科学中变得越来越不可或缺。 ## 1.1 交互特征在模型性能中的作用 交互特征能够捕捉到数据中的非线性关系,这对于模型理解和预测复杂模式至关重要。例如
recommend-type

c语言从链式队列 中获取头部元素并返回其状态的函数怎么写

在 C 语言中,如果你有一个链式队列的数据结构,通常它会包含两个指针,一个指向队首(front),一个指向队尾(rear)。以下是一个简单的链式队列头部元素获取函数的示例,假设 `Queue` 是你的链式队列结构体,并且已经包含了必要的成员变量: ```c typedef struct Queue { void* data; // 存储数据的指针 struct Queue* front; // 队首指针 struct Queue* rear; // 队尾指针 } Queue; // 获取头部元素并检查是否为空(如果队列为空,返回 NULL 或适当错误值) void*
recommend-type

易语言实现画板图像缩放功能教程

资源摘要信息:"易语言是一种基于中文的编程语言,主要面向中文用户,其特点是使用中文关键词和语法结构,使得中文使用者更容易理解和编写程序。易语言画板图像缩放源码是易语言编写的程序代码,用于实现图形用户界面中的画板组件上图像的缩放功能。通过这个源码,用户可以调整画板上图像的大小,从而满足不同的显示需求。它可能涉及到的图形处理技术包括图像的获取、缩放算法的实现以及图像的重新绘制等。缩放算法通常可以分为两大类:高质量算法和快速算法。高质量算法如双线性插值和双三次插值,这些算法在图像缩放时能够保持图像的清晰度和细节。快速算法如最近邻插值和快速放大技术,这些方法在处理速度上更快,但可能会牺牲一些图像质量。根据描述和标签,可以推测该源码主要面向图形图像处理爱好者或专业人员,目的是提供一种方便易用的方法来实现图像缩放功能。由于源码文件名称为'画板图像缩放.e',可以推断该文件是一个易语言项目文件,其中包含画板组件和图像处理的相关编程代码。" 易语言作为一种编程语言,其核心特点包括: 1. 中文编程:使用中文作为编程关键字,降低了学习编程的门槛,使得不熟悉英文的用户也能够编写程序。 2. 面向对象:易语言支持面向对象编程(OOP),这是一种编程范式,它使用对象及其接口来设计程序,以提高软件的重用性和模块化。 3. 组件丰富:易语言提供了丰富的组件库,用户可以通过拖放的方式快速搭建图形用户界面。 4. 简单易学:由于语法简单直观,易语言非常适合初学者学习,同时也能够满足专业人士对快速开发的需求。 5. 开发环境:易语言提供了集成开发环境(IDE),其中包含了代码编辑器、调试器以及一系列辅助开发工具。 6. 跨平台:易语言支持在多个操作系统平台编译和运行程序,如Windows、Linux等。 7. 社区支持:易语言有着庞大的用户和开发社区,社区中有很多共享的资源和代码库,便于用户学习和解决编程中遇到的问题。 在处理图形图像方面,易语言能够: 1. 图像文件读写:支持常见的图像文件格式如JPEG、PNG、BMP等的读取和保存。 2. 图像处理功能:包括图像缩放、旋转、裁剪、颜色调整、滤镜效果等基本图像处理操作。 3. 图形绘制:易语言提供了丰富的绘图功能,包括直线、矩形、圆形、多边形等基本图形的绘制,以及文字的输出。 4. 图像缩放算法:易语言实现的画板图像缩放功能中可能使用了特定的缩放算法来优化图像的显示效果和性能。 易语言画板图像缩放源码的实现可能涉及到以下几个方面: 1. 获取画板上的图像:首先需要从画板组件中获取到用户当前绘制或已经存在的图像数据。 2. 图像缩放算法的应用:根据用户的需求,应用适当的图像缩放算法对获取的图像数据进行处理。 3. 图像重新绘制:处理后的图像数据需要重新绘制到画板上,以实现缩放后的效果。 4. 用户交互:提供用户界面,让用户能够通过按钮、滑块等控件选择缩放比例和模式,以及触发缩放操作。 5. 性能优化:为了确保图像缩放操作流畅,需要考虑代码的执行效率和资源的合理利用。 在易语言社区中,用户可以根据自己的需求修改和扩展画板图像缩放源码,或者根据提供的API进一步开发更多高级图像处理功能,从而丰富软件的功能和用户体验。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依