D_loss_real0 = binary_crossentropy_with_label_smoothing(logits=D_logit_real, labels=tf.ones_like(D_logit_real))为什么会出现报错TypeError: got an unexpected keyword argument 'logits'
时间: 2023-06-08 14:06:20 浏览: 74
这个报错可能是因为在使用binary_crossentropy_with_label_smoothing函数时,该函数不支持名为"logits"的参数。可能是由于该函数的版本不同或者参数命名有所变化所导致的。您可以查看函数的文档或者修改参数名来解决这个问题。
相关问题
D_loss_real0 = binary_crossentropy_with_label_smoothing(logits=D_logit_real, labels=tf.ones_like(D_logit_real))
您的第一个问题是有关二进制交叉熵损失函数的,特别是带标签平滑的二进制交叉熵。该函数被用来比较两个输入向量中的元素,通常用于判别器的训练过程中来衡量其输出与真实标签之间的差异。在您提供的公式中,logits表示神经网络的输出(或者预测),而labels则表示目标或真实的标签(或者答案)。函数将预测输出与真实标签进行比较,并返回相应的损失值。但是,我不了解您的具体上下文背景,所以无法提供更详细的答案。感谢您的提问!
F.binary_cross_entropy和F.binary_cross_entropy_with_logits的区别,及各自的用法
F.binary_cross_entropy和F.binary_cross_entropy_with_logits是PyTorch中常用的两个损失函数,用于二分类问题。
F.binary_cross_entropy的输入是预测结果和目标标签,它先将预测结果通过sigmoid函数映射到[0, 1]之间的概率值,再计算二分类交叉熵损失。这个函数适用于模型输出为概率值的情况。
F.binary_cross_entropy_with_logits的输入是预测结果和目标标签,但它不会对预测结果进行sigmoid转换。它先将预测结果称为“logits”,然后计算二分类交叉熵损失。这个函数适用于模型输出未经过概率映射的情况。
具体使用时,如果你的模型输出已经通过sigmoid激活函数得到了概率值,那么可以使用F.binary_cross_entropy;如果模型输出是未经过概率映射的原始值,那么应该使用F.binary_cross_entropy_with_logits。
示例代码如下:
```python
import torch
import torch.nn.functional as F
# 模拟模型输出和目标标签
logits = torch.tensor([0.5, 0.8, 0.2])
targets = torch.tensor([1, 0, 1])
# 使用F.binary_cross_entropy计算损失
probs = torch.sigmoid(logits)
loss = F.binary_cross_entropy(probs, targets)
print(loss.item()) # 输出损失值
# 使用F.binary_cross_entropy_with_logits计算损失
loss_logits = F.binary_cross_entropy_with_logits(logits, targets)
print(loss_logits.item()) # 输出损失值
```
希望能帮助到你!
阅读全文