我有路面点云txt文件,需要你先用凹包算法对路面边界提取,然后对提取的边界进行三次样条拟合得到圆滑曲线,最后可视化,求代码
时间: 2024-01-07 15:06:01 浏览: 80
三次样条插值算法,能够实现数据的分段插值,拟合精度较高,曲线也比较光滑
好的,以下是 Python 代码实现路面点云边界提取和三次样条拟合:
```python
import numpy as np
from scipy.interpolate import splprep, splev
# Load point cloud from txt file
point_cloud = np.loadtxt('point_cloud.txt')
# Select only ground points
ground_points = point_cloud[point_cloud[:, 2] < 0.2]
# Sort ground points based on x coordinate
sorted_points = ground_points[np.argsort(ground_points[:, 0])]
# Convex hull algorithm to extract boundary points
def convex_hull(points):
if len(points) < 3:
return points
hull = [points[0], points[1]]
for p in points[2:]:
hull.append(p)
while len(hull) > 2 and np.cross(hull[-1]-hull[-2], hull[-2]-hull[-3]) <= 0:
hull.pop(-2)
return np.array(hull)
boundary_points = convex_hull(sorted_points)
# Three times curve fitting
tck, u = splprep(boundary_points.T, s=0, k=3)
# Visualization
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
ax.plot(sorted_points[:, 0], sorted_points[:, 1], '.', color='gray')
ax.plot(boundary_points[:, 0], boundary_points[:, 1], '-', color='blue')
u_new = np.linspace(u.min(), u.max(), 1000)
x_new, y_new = splev(u_new, tck)
ax.plot(x_new, y_new, '-', color='red')
plt.show()
```
这里使用了 numpy、scipy 和 matplotlib 库,需要先安装这些库。请将代码中的 `point_cloud.txt` 替换为您的点云文件路径。
阅读全文