idx = dist.sort(1)

时间: 2024-05-28 20:10:57 浏览: 15
这行代码的作用是对一个二维张量 `dist` 的每一行进行排序,并返回排序后每个元素在原行中的索引。具体来说,`sort(1)` 中的参数 `1` 表示对第二个维度(也就是每一行)进行排序。返回的 `idx` 张量和排序后的张量具有相同的形状,其每一行包含了原行中元素排好序后的索引。可以这样理解,假设 `dist` 是一个 $m\times n$ 的张量,那么 `idx` 的第 $i$ 行就是 `dist` 第 $i$ 行中每个元素在该行中排好序后的索引。例如,如果 `dist` 的第 $i$ 行为 `[9, 2, 5, 3]`,那么 `idx` 的第 $i$ 行就是 `[1, 3, 2, 0]`,表示排序后的结果为 `[2, 3, 5, 9]`,对应的元素在原行中的索引分别为 $1, 3, 2, 0$。
相关问题

找错误修改fid = fopen('node_coordinates555.txt', 'r'); node_coords = zeros(length(a1), 3); for i=1:length(a1) coords = fscanf(fid, '%f', 3); node_coords(i,:) = coords'; end fclose(fid); % 计算网络连通介数中心性 n = length(a1); bc = zeros(n, 1); for s=1:n % 初始化 queue = []; dist = -1 * ones(n, 1); sigma = zeros(n, 1); sigma(s) = 1; dist(s) = 0; queue(end+1) = s; % BFS while ~isempty(queue) v = queue(1); queue = queue(2:end); for w=find(a1(v,:)) if dist(w) < 0 queue(end+1) = w; dist(w) = dist(v) + 1; end if dist(w) == dist(v) + 1 sigma(w) = sigma(w) + sigma(v); end end end % 计算介数中心性 delta = zeros(n, 1); while ~isempty(queue) w = queue(end); queue = queue(1:end-1); for v=find(a1(:,w))' if dist(v) == dist(w) - 1 delta(v) = delta(v) + (sigma(v) / sigma(w)) * (1 + delta(w)); end end if w ~= s bc(w) = bc(w) + delta(w) * f1(s,w); end end end % 找出前十个重要节点 [~, idx] = sort(bc, 'descend'); disp('Top 10 important nodes:'); for i=1:10 fprintf('%d. Node %d, (%.2f, %.2f, %.2f)\n', i, idx(i), node_coords(idx(i),:)); end

可能存在多个错误,我将逐一解释和修改: 1. 第一行代码打开的文件名是 'node_coordinates555.txt',可能是文件名拼写错误。如果文件名正确,请确保该文件存在于当前工作目录中。 2. 第二行代码中,变量 a1 未在代码中定义,因此需要先定义 a1。 3. 在计算介数中心性时,需要在循环前将 queue 初始化为空数组,即在第 13 行加上 `queue = [];` 。 4. 在计算介数中心性时,需要将终止条件改为 `while ~isempty(queue)` ,即在第 23 行和第 27 行修改。 下面是修改后的代码: ``` fid = fopen('node_coordinates.txt', 'r'); node_coords = zeros(length(a1), 3); for i=1:length(a1) coords = fscanf(fid, '%f', 3); node_coords(i,:) = coords'; end fclose(fid); % 计算网络连通介数中心性 n = length(a1); bc = zeros(n, 1); for s=1:n % 初始化 queue = []; dist = -1 * ones(n, 1); sigma = zeros(n, 1); sigma(s) = 1; dist(s) = 0; queue(end+1) = s; % BFS while ~isempty(queue) v = queue(1); queue = queue(2:end); for w=find(a1(v,:)) if dist(w) < 0 queue(end+1) = w; dist(w) = dist(v) + 1; end if dist(w) == dist(v) + 1 sigma(w) = sigma(w) + sigma(v); end end end % 计算介数中心性 delta = zeros(n, 1); queue = []; while ~isempty(queue) w = queue(end); queue = queue(1:end-1); for v=find(a1(:,w))' if dist(v) == dist(w) - 1 delta(v) = delta(v) + (sigma(v) / sigma(w)) * (1 + delta(w)); end end if w ~= s bc(w) = bc(w) + delta(w) * f1(s,w); end end end % 找出前十个重要节点 [~, idx] = sort(bc, 'descend'); disp('Top 10 important nodes:'); for i=1:10 fprintf('%d. Node %d, (%.2f, %.2f, %.2f)\n', i, idx(i), node_coords(idx(i),:)); end ```

代码解释:format long; close all; clear ; clc tic global B0 bh B1 B2 M N pd=8; %问题维度(决策变量的数量) N=100; % 群 (鲸鱼) 规模 readfile HPpos=chushihua; tmax=300; % 最大迭代次数 (tmax) Wzj=fdifference(HPpos); Convergence_curve = zeros(1,tmax); B = 0.1; for t=1:tmax for i=1:size(HPpos,1)%对每一个个体地多维度进行循环运算 % 更新位置和记忆 % j1=(HPpos(i,:)>=B1);j2=(HPpos(i,:)<=B2); % if (j1+j2)==16 % HPpos(i,:)=HPpos(i,:); %%%%有问题,原算法改正&改进算法映射规则 % else % %HPpos(i,:)=B0+bh.(ones(1,8)(-1)+rand(1,8)2);%产生范围内的随机数更新鲸鱼位置 % HPpos(i,:)=rand(1,8).(B2-B1)+B1; % end HPposFitness=Wzj(:,2M+1); end [~,indx] = min(HPposFitness); Target = HPpos(indx,:); % Target HPO TargetScore =HPposFitness(indx); % Convergence_curve(1)=TargetScore; % Convergence_curve(1)=TargetScore; %nfe = zeros(1,MaxIt); %end % for t=2:tmax c = 1 - t((0.98)/tmax); % Update C Parameter kbest=round(Nc); % Update kbest一种递减机制 % for i = 1:N r1=rand(1,pd)<c; r2=rand; r3=rand(1,pd); idx=(r1==0); z=r2.idx+r3.~idx; % r11=rand(1,dim)<c; % r22=rand; % r33=rand(1,dim); % idx=(r11==0); % z2=r22.idx+r33.~idx; if rand<B xi=mean(HPpos); dist = pdist2(xi,HPpos);%欧几里得距离 [~,idxsortdist]=sort(dist); SI=HPpos(idxsortdist(kbest),:);%距离位置平均值最大的搜索代理被视为猎物 HPpos(i,:) =HPpos(i,:)+0.5((2*(c)z.SI-HPpos(i,:))+(2(1-c)z.xi-HPpos(i,:))); else for j=1:pd rr=-1+2z(j); HPpos(i,j)= 2z(j)cos(2pirr)(Target(j)-HPpos(i,j))+Target(j); end end HPposFitness=Wzj(:,2M+1); % % Update Target if HPposFitness(i)<TargetScore Target = HPpos(i,:); TargetScore = HPposFitness(i); end Convergence_curve(t)=TargetScore; disp(['Iteration: ',num2str(t),' Best Fitness = ',num2str(TargetScore)]); end

这段代码是一个使用鲸鱼优化算法来解决多维优化问题的程序。该算法模拟了鲸鱼群体寻找猎物的过程,通过不断更新每个鲸鱼的位置来逐步优化问题的解。 代码中的变量含义如下: - B0, bh, B1, B2:表示鲸鱼位置的范围和相关参数。 - M, N, pd:表示问题的维度、鲸鱼数量和决策变量的数量。 - HPpos:表示每个鲸鱼的位置。 - Wzj:表示问题的目标函数。 - tmax:表示最大迭代次数。 - Convergence_curve:表示每次迭代后问题的最优解。 - B:表示算法中的一个常数。 - c:表示算法中的一个参数,用于控制搜索范围。 - kbest:表示算法中的一个参数,用于控制搜索代理的数量。 - xi:表示算法中的一个参数,用于计算搜索代理的位置。 - dist:表示每个鲸鱼与搜索代理之间的距离。 - SI:表示距离位置平均值最大的搜索代理。 - Target:表示当前最优解的位置。 - TargetScore:表示当前最优解的目标函数值。 在算法的每次迭代中,程序会对每个鲸鱼的位置进行更新,并计算更新后的目标函数值。然后,程序会选出当前最优解,并将其存储在Target和TargetScore变量中。最后,程序会将每次迭代后的最优解存储在Convergence_curve变量中,以便后续分析。

相关推荐

为什么两个结果一模一样,该怎么改:BC1 = zeros(1,N); % 第一个网络的介数中心性 BC2 = zeros(1,N); % 第二个网络的介数中心性 for i=1:N % 计算第一个网络中的介数中心性 [dist,~,pred] = graphshortestpath(sparse(a1),i,'Directed',false); for j=1:N if i~=j && dist(j)<Inf path = j; k = j; while k~=i k = pred(k); path = [k,path]; %#ok<AGROW> end for l=1:length(path)-1 BC1(path(l)) = BC1(path(l)) + 1/dist(j); end end end end fid = fopen('node_coordinates.txt'); C = textscan(fid, 'Node %d: (%f,%f,%f)'); fclose(fid); nodes = [C{2}, C{3}, C{4}]; node_ids = C{1}; node_pos = nodes(:,1:2); [BC1_sorted, BC1_idx] = sort(BC1, 'descend'); % 将介数中心性从高到低排序并记录排序后的索引 top5_idx = BC1_idx(1:5); % 取前5个节点的索引 for i = 1:5 node_id = idx(top5_idx(i)); % 使用排序后的索引来获取节点编号 node_bc = BC1(node_id); node_x = node_pos(top5_idx(i), 1); % 使用未排序的索引来获取节点坐标 node_y = node_pos(top5_idx(i), 2); fprintf('节点 %d,介数中心性为 %f,坐标为 (%f,%f)\n', node_id, node_bc, node_x, node_y); end for i=1:N % 计算第二个网络中的介数中心性 [dist,~,pred] = graphshortestpath(sparse(a2),i,'Directed',false); for j=1:N if i~=j && dist(j)<Inf path = j; k = j; while k~=i k = pred(k); path = [k,path]; %#ok<AGROW> end for l=1:length(path)-1 BC2(path(l)) = BC2(path(l)) + 1/dist(j); end end end end fid = fopen('node_coordinates2.txt'); C = textscan(fid, 'Node %d: (%f,%f,%f)'); fclose(fid); nodes = [C{2}, C{3}, C{4}]; node_ids = C{1}; node_pos = nodes(:,1:2); [BC2_sorted, BC2_idx] = sort(BC2, 'descend'); % 将介数中心性从高到低排序并记录排序后的索引 top5_idx = BC2_idx(1:5); % 取前5个节点的索引 for i = 1:5 node_id = idx(top5_idx(i)); % 使用排序后的索引来获取节点编号 node_bc = BC2(node_id); node_x = node_pos(top5_idx(i), 1); % 使用未排序的索引来获取节点坐标 node_y = node_pos(top5_idx(i), 2); fprintf('节点 %d,介数中心性为 %f,坐标为 (%f,%f)\n', node_id, node_bc, node_x, node_y); end

最新推荐

recommend-type

基于Web开发的聊天系统(模拟QQ的基本功能)源码+项目说明.zip

基于Web开发的聊天系统(模拟QQ的基本功能)源码+项目说明.zip 本项目是一个仿QQ基本功能的前后端分离项目。前端采用了vue.js技术栈,后端采用springboot+netty混合开发。实现了好友申请、好友分组、好友聊天、群管理、群公告、用户群聊等功能。 后端技术栈 1. Spring Boot 2. netty nio 3. WebSocket 4. MyBatis 5. Spring Data JPA 6. Redis 7. MySQL 8. Spring Session 9. Alibaba Druid 10. Gradle #### 前端技术栈 1. Vue 3. axios 4. vue-router 5. Vuex 6. WebSocket 7. vue-cli4 8. JavaScript ES6 9. npm 【说明】 【1】项目代码完整且功能都验证ok,确保稳定可靠运行后才上传。欢迎下载使用!在使用过程中,如有问题或建议,请及时私信沟通,帮助解答。 【2】项目主要针对各个计算机相关专业,包括计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领
recommend-type

wx293儿童预防接种预约小程序-springboot+vue+uniapp.zip(可运行源码+sql文件+文档)

本儿童预防接种预约微信小程序可以实现管理员和用户。管理员功能有个人中心,用户管理,儿童信息管理,疫苗信息管理,儿童接种管理,儿童接种史管理,医疗机构管理,预约接种管理,系统管理等。用户功能有注册登录,儿童信息,疫苗信息,儿童接种,儿童接种史,医疗机构,预约接种,我的收藏管理等。因而具有一定的实用性。 本站后台采用Java的SSM框架进行后台管理开发,可以在浏览器上登录进行后台数据方面的管理,MySQL作为本地数据库,微信小程序用到了微信开发者工具,充分保证系统的稳定性。系统具有界面清晰、操作简单,功能齐全的特点,使得医院挂号信息管理工作系统化、规范化。 管理员可以管理用户信息,可以对用户信息进行添加删除修改操作。管理员可以对儿童信息进行添加,查询修改,删除操作。系统管理员可以管理疫苗信息。系统管理员可以添加,修改,删除儿童接种史。 小程序患者是需要注册才可以进行登录的。在小程序里点击我的,会出现关于我的界面,在这里可以修改个人信息,以及可以点击其他功能模块。用户可以提交儿童接种预约信息。
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠

![STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-c138c506ec1b17b643c23c4884fd9882.png) # 1. STM32单片机小车硬件优化策略概述 STM32单片机小车在实际应用中,硬件优化至关重要。本文将深入探讨STM32单片机小车硬件优化策略,从硬件设计、元器件选型、安装、调试、可靠性到维护等方面进行全面的分析,旨在帮助开发者提升小车的性能、稳定性和使用寿命。 # 2. 硬件设计优化 硬件设计优化是S
recommend-type

android studio购物车源码

在Android Studio中,购物车功能通常涉及到一个应用中的UI设计、数据管理、以及可能的网络请求。源码通常包含以下几个主要部分: 1. **UI组件**:如RecyclerView用于展示商品列表,每个商品项可能是Adapter中的ViewHolder。会有一个添加到购物车按钮和一个展示当前购物车内容的部分。 2. **数据模型**:商品类(通常包含商品信息如名称、价格、图片等)、购物车类(可能存储商品列表、总价等)。 3. **添加/删除操作**:在用户点击添加到购物车时,会处理商品的添加逻辑,并可能更新数据库或缓存。 4. **数据库管理**:使用SQLite或其他持久化解