已有代码major_ids = random.sample(range(100000, 999999), 100),要想进一步保证生成的结果没有重复数据,并运用majors=[ ],给出代码

时间: 2023-06-18 14:05:39 浏览: 29
可以使用一个while循环来保证生成的结果没有重复数据,代码如下: ``` majors = [] major_ids = [] while len(major_ids) < 100: new_id = random.randint(100000, 999999) if new_id not in major_ids: major_ids.append(new_id) majors.append("Major " + str(new_id)) print(majors) ``` 这个代码会不断生成新的ID,直到生成了100个不重复的ID为止。同时,每次生成新的ID时,会将其转化为一个字符串并添加到`majors`这个列表中。最后输出`majors`列表,即为生成的没有重复数据的结果。
相关问题

函数def validate_entries(): student_id = student_id_entry.get() name = name_entry.get() major = major_entry.get() if not student_id.isdigit() or not name.isalpha() or not major.isalpha(): messagebox.showerror("错误", "学号、姓名和专业必须符合要求(学号为数字,姓名和专业为字符)") elif not student_id or not name or not major: messagebox.showerror("错误", "学号、姓名和专业不能为空") else: display_text = f"学号:{student_id}\n姓名:{name}\n专业:{major}" display_text_area.config(state=tk.NORMAL) display_text_area.delete("1.0", tk.END) display_text_area.insert(tk.END, display_text) display_text_area.config(state=tk.DISABLED)如何将内容传给display_frame = tk.Frame(root) display_frame.pack(padx=10, pady=10) display_label = tk.Label(display_frame, text="已录入学生信息:") display_label.pack() display_text_area = tk.Text(display_frame, height=5, width=30) display_text_area.pack() display_text_area.config(state=tk.DISABLED)

在函数validate_entries()中,当输入的学号、姓名和专业都符合要求时,将学生信息以字符串的形式保存在变量display_text中。接下来,需要将display_text显示在窗口的display_text_area中,以便用户查看已录入的学生信息。 为了实现这个功能,可以将display_text_area作为参数传递给validate_entries()函数,然后在函数中更新其显示的文本内容。具体来说,可以将以下代码添加到validate_entries()函数中: ``` def validate_entries(display_text_area): # 省略前面的代码 else: display_text = f"学号:{student_id}\n姓名:{name}\n专业:{major}" display_text_area.config(state=tk.NORMAL) display_text_area.delete("1.0", tk.END) display_text_area.insert(tk.END, display_text) display_text_area.config(state=tk.DISABLED) ``` 然后,在创建display_frame、display_label和display_text_area的代码中,将display_text_area作为参数传递给validate_entries()函数: ``` display_frame = tk.Frame(root) display_frame.pack(padx=10, pady=10) display_label = tk.Label(display_frame, text="已录入学生信息:") display_label.pack() display_text_area = tk.Text(display_frame, height=5, width=30) display_text_area.pack() display_text_area.config(state=tk.DISABLED) validate_button = tk.Button(root, text="验证并提交", command=lambda: validate_entries(display_text_area)) validate_button.pack() ``` 这样,在用户点击“验证并提交”按钮时,validate_entries()函数将会更新display_text_area的显示内容。

优化这个代码import xarray as xr import netCDF4 as nc import pandas as pd import numpy as np import datetime import matplotlib.pyplot as plt import cartopy.mpl.ticker as cticker import cartopy.crs as ccrs import cartopy.feature as cfeature ds = xr.open_dataset('C:/Users/cindy/Desktop/SP.nc', engine='netcdf4') # 读取原始数据 ds_temp = xr.open_dataset('C:/Users/cindy/Desktop/SP.nc') # 区域提取* south_asia = ds_temp.sel(latitude=slice(38, 28), longitude=slice(75, 103)) indian_ocean = ds_temp.sel(latitude=slice(5, -15), longitude=slice(60, 100)) # 高度插值 south_asia_200hpa = south_asia.t.interp(level=200) indian_ocean_200hpa = indian_ocean.t.interp(level=200) south_asia_400hpa = south_asia.t.interp(level=400) indian_ocean_400hpa = indian_ocean.t.interp(level=400) # 区域平均 TTP = south_asia_400hpa.mean(dim=('latitude', 'longitude'))#.values TTIO = indian_ocean_400hpa.mean(dim=('latitude', 'longitude'))# TTP_200hpa = south_asia_200hpa.mean(dim=('latitude', 'longitude')) TTIO_200hpa = indian_ocean_200hpa.mean(dim=('latitude', 'longitude')) tlup=(TTP-TTIO)-(TTP_200hpa-TTIO_200hpa)-(-5.367655815) # 定义画图区域和投影方式 fig = plt.figure(figsize=[10, 8]) ax = plt.axes(projection=ccrs.PlateCarree()) # 添加地图特征 ax.set_extent([60, 140, -15, 60], crs=ccrs.PlateCarree()) ax.add_feature(cfeature.COASTLINE.with_scale('50m'), linewidths=0.5) ax.add_feature(cfeature.LAND.with_scale('50m'), facecolor='lightgray') ax.add_feature(cfeature.OCEAN.with_scale('50m'), facecolor='white') # 画距平场 im = ax.contourf(TTP_200hpa, TTP, tlup, cmap='coolwarm', levels=np.arange(-4, 4.5, 0.5), extend='both') # 添加色标 cbar = plt.colorbar(im, ax=ax, shrink=0.8) cbar.set_label('Temperature anomaly (°C)') # 添加经纬度坐标轴标签 ax.set_xticks(np.arange(60, 105, 10), crs=ccrs.PlateCarree()) ax.set_yticks(np.arange(-10, 40, 10), crs=ccrs.PlateCarree()) lon_formatter = cticker.LongitudeFormatter() lat_formatter = cticker.LatitudeFormatter() ax.xaxis.set_major_formatter(lon_formatter) ax.yaxis.set_major_formatter(lat_formatter) # 添加标题和保存图片 plt.title('Temperature anomaly at 400hPa over South Asia and the Indian Ocean') plt.savefig('temperature_anomaly.png', dpi=300) plt.show()

1. 首先,可以将多个导入语句合并为一行,以提高代码的可读性。例如: ``` import xarray as xr, netCDF4 as nc, pandas as pd, numpy as np, datetime import matplotlib.pyplot as plt import cartopy.mpl.ticker as cticker, cartopy.crs as ccrs, cartopy.feature as cfeature ``` 2. 可以在代码中删除不必要的变量,例如 `ds` 和 `ds_temp` 都是指向同一个文件的数据集,因此只需要保留一个即可。 3. 对于数据集的区域提取和高度插值操作,可以将它们合并成一个链式操作,以减少代码行数。例如: ``` south_asia = ds.sel(latitude=slice(38, 28), longitude=slice(75, 103)).t.interp(level=200) indian_ocean = ds.sel(latitude=slice(5, -15), longitude=slice(60, 100)).t.interp(level=200) ``` 4. 对于计算平均值的操作,可以使用 `reduce` 函数,以减少代码行数。例如: ``` TTP, TTIO = np.array([south_asia_400hpa, indian_ocean_400hpa]).reduce(lambda x, y: x.mean(dim=('latitude', 'longitude')), axis=0) TTIO_200hpa = indian_ocean_200hpa.mean(dim=('latitude', 'longitude')) ``` 5. 可以将一些常量定义为全局变量或者类变量,以方便后续使用。例如: ``` LEVEL = 400 SLICE_LATITUDE = slice(38, 28) SLICE_LONGITUDE = slice(75, 103) SLICE_IO_LATITUDE = slice(5, -15) SLICE_IO_LONGITUDE = slice(60, 100) TITLE = 'Temperature anomaly at {}hPa over South Asia and the Indian Ocean'.format(LEVEL) ``` 6. 可以将绘图的代码封装为一个函数,以提高代码的可读性和复用性。例如: ``` def plot_temperature_anomaly(TTP, TTIO, TTP_200hpa, TTIO_200hpa, tlup): fig = plt.figure(figsize=[10, 8]) ax = plt.axes(projection=ccrs.PlateCarree()) ax.set_extent([60, 140, -15, 60], crs=ccrs.PlateCarree()) ax.add_feature(cfeature.COASTLINE.with_scale('50m'), linewidths=0.5) ax.add_feature(cfeature.LAND.with_scale('50m'), facecolor='lightgray') ax.add_feature(cfeature.OCEAN.with_scale('50m'), facecolor='white') im = ax.contourf(TTP_200hpa, TTP, tlup, cmap='coolwarm', levels=np.arange(-4, 4.5, 0.5), extend='both') cbar = plt.colorbar(im, ax=ax, shrink=0.8) cbar.set_label('Temperature anomaly (°C)') ax.set_xticks(np.arange(60, 105, 10), crs=ccrs.PlateCarree()) ax.set_yticks(np.arange(-10, 40, 10), crs=ccrs.PlateCarree()) lon_formatter = cticker.LongitudeFormatter() lat_formatter = cticker.LatitudeFormatter() ax.xaxis.set_major_formatter(lon_formatter) ax.yaxis.set_major_formatter(lat_formatter) plt.title(TITLE) plt.savefig('temperature_anomaly.png', dpi=300) plt.show() ``` 7. 最后,可以将所有操作封装为一个函数,以方便调用。例如: ``` def calculate_and_plot_temperature_anomaly(filename): ds = xr.open_dataset(filename) south_asia = ds.sel(latitude=SLICE_LATITUDE, longitude=SLICE_LONGITUDE).t.interp(level=LEVEL) indian_ocean = ds.sel(latitude=SLICE_IO_LATITUDE, longitude=SLICE_IO_LONGITUDE).t.interp(level=LEVEL) south_asia_200hpa = south_asia.t.interp(level=200) indian_ocean_200hpa = indian_ocean.t.interp(level=200) TTP, TTIO = np.array([south_asia, indian_ocean]).reduce(lambda x, y: x.mean(dim=('latitude', 'longitude')), axis=0) TTP_200hpa = south_asia_200hpa.mean(dim=('latitude', 'longitude')) TTIO_200hpa = indian_ocean_200hpa.mean(dim=('latitude', 'longitude')) tlup=(TTP-TTIO)-(TTP_200hpa-TTIO_200hpa)-(-5.367655815) plot_temperature_anomaly(TTP, TTIO, TTP_200hpa, TTIO_200hpa, tlup) ``` 这样,我们就可以通过调用 `calculate_and_plot_temperature_anomaly(filename)` 函数来计算和绘制温度距平图了。

相关推荐

select csr.school_year 学年,csr.name 学期,cs.name 姓名,cs.code 学号,cs.grade 年级,cd.name 学院,cm.name 专业,ca.name 行政班,cj.lesson_no 课程号,tc.code 课程代码,tc.name 课程名称, listagg(ct.name,',') within group(order by ct.name) 授课教师, tc.credits 学分,cj.score_text 分数,cj.gp 绩点,xc.name 课程类别,xc.code 课程类别代码,hc.name 修读类别,xs.name 学生类别,pscj.score_text 平时成绩,qzcj.score_text 期中成绩, sycj.score_text 实验成绩,qmcj.score_text 期末成绩,zpcj.score_text 总评成绩,bkcj.score_text 补考成绩 from t_course_grades cj left join c_students cs on cs.id = cj.std_id left join c_semesters csr on csr.id = cj.semester_id left join t_courses tc on tc.id = cj.course_id left join c_departments cd on cd.id = cs.department_id left join c_majors cm on cm.id = cs.major_id left join c_adminclasses ca on ca.id = cs.adminclass_id left join xb_course_types xc on xc.id = cj.course_type_id left join hb_course_take_types hc on hc.id = cj.course_take_type_id left join xb_std_types xs on xs.id = cs.type_id left join t_lessons_teachers tlt on tlt.lesson_id=cj.lesson_id left join c_teachers ct on ct.id = tlt.teacher_id left join t_exam_grades bkcj on cj.id = bkcj.course_grade_id and bkcj.grade_type_id=4 left join t_exam_grades pscj on cj.id = pscj.course_grade_id and pscj.grade_type_id=3 left join t_exam_grades qzcj on cj.id = qzcj.course_grade_id and qzcj.grade_type_id=1 left join t_exam_grades zpcj on cj.id = zpcj.course_grade_id and zpcj.grade_type_id=7 left join t_exam_grades qmcj on cj.id = qmcj.course_grade_id and qmcj.grade_type_id=2 left join t_exam_grades sycj on cj.id = sycj.course_grade_id and sycj.grade_type_id=8 where cj.semester_id='243' and cs.code='21403186' order by cs.code

def draw_stats(self, vals, vals1, vals2, vals3, vals4, vals5, vals6): self.ax1 = plt.subplot(self.gs[0, 0]) self.ax1.plot(vals) self.ax1.set_xlim(self.xlim) locs = self.ax1.get_xticks() locs[0] = self.xlim[0] locs[-1] = self.xlim[1] self.ax1.set_xticks(locs) self.ax1.use_sticky_edges = False self.ax1.set_title(f'Connected Clients Ratio') self.ax2 = plt.subplot(self.gs[1, 0]) self.ax2.plot(vals1) self.ax2.set_xlim(self.xlim) self.ax2.set_xticks(locs) self.ax2.yaxis.set_major_formatter(FuncFormatter(format_bps)) self.ax2.use_sticky_edges = False self.ax2.set_title('Total Bandwidth Usage') self.ax3 = plt.subplot(self.gs[2, 0]) self.ax3.plot(vals2) self.ax3.set_xlim(self.xlim) self.ax3.set_xticks(locs) self.ax3.use_sticky_edges = False self.ax3.set_title('Bandwidth Usage Ratio in Slices (Averaged)') self.ax4 = plt.subplot(self.gs[3, 0]) self.ax4.plot(vals3) self.ax4.set_xlim(self.xlim) self.ax4.set_xticks(locs) self.ax4.use_sticky_edges = False self.ax4.set_title('Client Count Ratio per Slice') self.ax5 = plt.subplot(self.gs[0, 1]) self.ax5.plot(vals4) self.ax5.set_xlim(self.xlim) self.ax5.set_xticks(locs) self.ax5.use_sticky_edges = False self.ax5.set_title('Coverage Ratio') self.ax6 = plt.subplot(self.gs[1, 1]) self.ax6.plot(vals5) self.ax6.set_xlim(self.xlim) self.ax6.set_xticks(locs) self.ax6.yaxis.set_major_formatter(FormatStrFormatter('%.3f')) self.ax6.use_sticky_edges = False self.ax6.set_title('Block ratio') self.ax7 = plt.subplot(self.gs[2, 1]) self.ax7.plot(vals6) self.ax7.set_xlim(self.xlim) self.ax7.set_xticks(locs) self.ax7.yaxis.set_major_formatter(FormatStrFormatter('%.3f')) self.ax7.use_sticky_edges = False self.ax7.set_title('Handover ratio')修改为一张张输出图片

f_path = r"E:\gra_thesis\sum_pre_data_new\grid_nc\AMJ_pre_total_precip.nc" f = xr.open_dataset(f_path) f # %% lon = f['lon'] lat = f['lat'] data= f['precip'] data_mean = np.mean(data, 0) # %% shp_path = r"C:\Users\86133\Desktop\thesis\2020国家级行政边界\China_province.shp" sf = shapefile.Reader(shp_path) shp_reader = Reader(shp_path) sf.records() region_list = [110000, 120000, 130000,140000,150000,210000,220000, 230000, 310000, 320000,330000,340000,350000,360000, 370000, 410000, 420000,430000,440000,450000,460000, 500000, 510000, 520000,530000,540000,610000,620000, 630000, 640000, 650000,710000,810000,820000] # %% proj = ccrs.PlateCarree() extent = [105, 125, 15, 30] fig, ax = plt.subplots(1, 1, subplot_kw={'projection': proj}) ax.set_extent(extent, proj) # ax.add_feature(cfeature.LAND, fc='0.8', zorder=1) ax.add_feature(cfeature.COASTLINE, lw=1, ec="k", zorder=2) ax.add_feature(cfeature.OCEAN, fc='white', zorder=2) ax.add_geometries(shp_reader.geometries(), fc="None", ec="k", lw=1, crs=proj, zorder=2) ax.spines['geo'].set_linewidth(0.8) ax.tick_params(axis='both',which='major',labelsize=9, direction='out',length=2.5,width=0.8,pad=1.5, bottom=True, left=True) ax.tick_params(axis='both',which='minor',direction='out',width=0.5,bottom=True,left=True) ax.set_xticks(np.arange(105, 130, 5)) ax.set_yticks(np.arange(15, 40, 5)) ax.xaxis.set_major_formatter(LongitudeFormatter()) ax.yaxis.set_major_formatter(LatitudeFormatter()) cf = ax.contourf(lon, lat, data_mean, extend='both', cmap='RdBu') cb = fig.colorbar(cf, shrink=0.9, pad=0.05)解释这段代码

# 考虑增加某个计数,会不会提高socre import numpy as np from sklearn.linear_model import LinearRegression # from sklearn.metrics import mean_squared_error file_soft = "/home/maillee/chip_temp_predict/data_handle/ftc_to_select_event/soft_event_ftc.xlsx" file_hard = "/home/maillee/chip_temp_predict/data_handle/ftc_to_select_event/hard_event_ftc.xlsx" file_hard_cache = "/home/maillee/chip_temp_predict/data_handle/ftc_to_select_event/hard_cahce_event_ftc.xlsx" pd_data_soft = pd.read_excel(file_soft,index_col=0) pd_data_hard = pd.read_excel(file_hard,index_col=0) pd_data_hard_cache = pd.read_excel(file_hard_cache,index_col=0) pd_y = pd_data_hard_cache['cores-power'] not_selected_event = ['branch-misses','bus-cycles','cache-misses','instructions', 'ref-cycles','L1-dcache-load-misses', 'L1-dcache-stores','L1-icache-load-misses', 'LLC-load-misses','LLC-store-misses','LLC-stores', 'branch-load-misses','dTLB-load-misses','dTLB-loads', 'dTLB-store-misses','dTLB-stores','iTLB-load-misses', 'iTLB-loads','node-load-misses','node-loads','node-store-misses', 'node-stores','alignment-faults','bpf-output','cgroup-switches', 'cpu-migrations','dummy','emulation-faults','major-faults','minor-faults', 'page-faults','task-clock',] count =0 pd_x = pd.concat([pd_data_hard,pd_data_hard_cache,pd_data_soft],axis=1,join='outer') for i in not_selected_event: count = count+1 pd_x =pd.concat(pd_x[i],pd_x[['cpu-clock','context-switches', 'branch-instructions','cpu-cycles','cache-references', 'L1-dcache-loads','LLC-loads','branch-loads']],axis=1,join='outer') model = LinearRegression().fit(pd_x, pd_y) # print(model.score(pd_x,pd_y)) #R2 score y_pred = model.predict(pd_x) # plt.plot(y_pred) # plt.plot(pd_y) mse = mean_squared_error(pd_y, y_pred) print(count,i,model.score(pd_x,pd_y), mse,'\n') woatis wring

最新推荐

recommend-type

毕业设计MATLAB_执行一维相同大小矩阵的QR分解.zip

毕业设计matlab
recommend-type

ipython-7.9.0.tar.gz

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

debugpy-1.0.0b3-cp37-cp37m-manylinux2010_x86_64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、