Keras构建神经网络模型,对Fashion MNIST数据集进行分类 11910803 #(1)导入 Tensor Flow import tensorflow as tf #(2)载入Fashion-MNIST 数据集 fashion mnist = tf keras datasets. fashion mnist 0 (X_ train, y_ train), (X test, y test) = fashion mnist. [1) 1211910803 #(3)利用resbape函数转换数字图像 X train_reshape = X train reshape(X_ train shape[0], 28*28) X test reshape = X test reshape(X test.shape[01. 28*28) #(4)标准化数字图像 X vain norm X test norm = 【21 / 255.0, X test reshape / 255.0 #(5)构建Sequential模型 model = tf keras models. (3) model.add(tf keras. layers Dense(50 input dim=28*28.activation='relu'.name='Hidden19) model.add(tf. keras.layers_Dense (50, activation='relu' name=Hidden2)) model.add(tf keras.layers.Dense (50,activation='relu' name='Hidden3')) model.add(tf keras lavers Dense(10,activation='softmax' name='Output)) #打印模型的概况 print(model.summary0) #(6)模型编译 model. [4] (optimizer='adam', loss='sparse_categorical _crossentropy" metrics=['accuracy']) #(7)模型训练 model. [51 (X train norm, y train, epochs=10 , verbose=1)
时间: 2024-03-07 21:46:25 浏览: 127
很抱歉,您提供的代码有一些语法错误和问题。我为您供以下经过修改的代码,以便使用Keras构建神经网络模型并对Fashion MNIST数据集进行分类:
```
# (1)导入TensorFlow和Keras
import tensorflow as tf
from tensorflow import keras
# (2)载入Fashion-MNIST数据集
fashion_mnist = keras.datasets.fashion_mnist
(X_train, y_train), (X_test, y_test) = fashion_mnist.load_data()
# (3)利用reshape函数转换数字图像
X_train_reshape = X_train.reshape(X_train.shape[0], 28*28)
X_test_reshape = X_test.reshape(X_test.shape[0], 28*28)
# (4)标准化数字图像
X_train_norm = X_train_reshape / 255.0
X_test_norm = X_test_reshape / 255.0
# (5)构建Sequential模型
model = keras.models.Sequential([
keras.layers.Dense(50, input_dim=28*28, activation='relu', name='Hidden1'),
keras.layers.Dense(50, activation='relu', name='Hidden2'),
keras.layers.Dense(50, activation='relu', name='Hidden3'),
keras.layers.Dense(10, activation='softmax', name='Output')
])
# 打印模型的概况
print(model.summary())
# (6)模型编译
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
# (7)模型训练
model.fit(X_train_norm, y_train, epochs=10, verbose=1)
```
这段代码将Fashion MNIST数据集中的数字图像转换为一维向量,然后标准化。接着,我们使用Sequential模型构建一个具有三个隐藏层和一个输出层的神经网络模型,并使用adam优化器和稀疏分类交叉熵损失函数进行模型编译。最后,我们在训练集上训练模型,进行10个epochs的训练,同时在训练过程中打印出训练进度。
希望对您有所帮助!
阅读全文