在python里使用pca函数对yale人脸数据集进行降维后的可视化
时间: 2024-05-10 07:15:52 浏览: 298
好的,首先我们需要导入必要的库和数据集:
```python
import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.datasets import fetch_olivetti_faces
# 导入数据集
data = fetch_olivetti_faces()
X = data.data
y = data.target
```
接下来,我们可以使用PCA函数进行降维。在这里,我们将使用2个主成分进行降维:
```python
# 进行PCA降维
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X)
```
最后,我们可以将降维后的结果进行可视化,以便更好地理解数据:
```python
# 绘制散点图
plt.figure(figsize=(10, 8))
plt.scatter(X_pca[:, 0], X_pca[:, 1], c=y)
plt.xlabel('PC1')
plt.ylabel('PC2')
plt.title('PCA Visualization of Yale Face Dataset')
plt.show()
```
这样就可以得到一个2D散点图,其中每个数据点代表一个人脸样本。不同的颜色代表不同的人。通过这个图,我们可以看到数据点之间的分布情况,以及不同人之间的区别。
完整代码如下:
```python
import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.datasets import fetch_olivetti_faces
# 导入数据集
data = fetch_olivetti_faces()
X = data.data
y = data.target
# 进行PCA降维
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X)
# 绘制散点图
plt.figure(figsize=(10, 8))
plt.scatter(X_pca[:, 0], X_pca[:, 1], c=y)
plt.xlabel('PC1')
plt.ylabel('PC2')
plt.title('PCA Visualization of Yale Face Dataset')
plt.show()
```
希望对你有帮助!
阅读全文