MATLAB函数均方根误差
时间: 2023-06-12 14:08:10 浏览: 103
MATLAB中可以使用`rmse`函数来计算均方根误差(Root Mean Square Error),该函数的语法如下:
```
RMSE = rmse(targets, outputs)
```
其中,`targets`是目标值向量,`outputs`是模型输出值向量,`RMSE`为计算得到的均方根误差。
例如,我们有以下目标值向量和模型输出值向量:
```
targets = [1 2 3 4 5];
outputs = [1.2 2.3 2.9 4.1 4.8];
```
则可以使用`rmse`函数计算均方根误差:
```
RMSE = rmse(targets, outputs)
RMSE =
0.4714
```
上述结果表示均方根误差为0.4714。
相关问题
matlab计算均方根误差
在Matlab中计算均方根误差(RMSE),可以使用以下方法之一:
方法1:直接使用Matlab中的rmse函数
```matlab
% 假设ytest和ytest_fit是一维数组,分别表示测试集的真实值和预测值
test_error = ytest - ytest_fit;
test_rmse = rmse(test_error);
```
方法2:使用均方根误差(RMSE)公式手动计算
```matlab
% 假设ytest和ytest_fit是一维数组,分别表示测试集的真实值和预测值
test_error = ytest - ytest_fit;
test_rmse = sqrt(sum(test_error.^2) / length(test_error));
```
matlab实现均方根误差
以下是两种Matlab实现均方根误差的方法:
1. 自己编写函数计算均方根误差
```matlab
function rmse = RMSE(img1, img2)
% img1和img2为两幅图像
% 计算均方根误差
mse = mean(mean((img1 - img2).^2));
rmse = sqrt(mse);
end
```
2. 使用Matlab内置函数immse()计算均方根误差
```matlab
img1 = imread('image1.jpg');
img2 = imread('image2.jpg');
% 将图像转换为灰度图像
img1_gray = rgb2gray(img1);
img2_gray = rgb2gray(img2);
% 计算均方根误差
rmse = sqrt(immse(img1_gray, img2_gray));
```
阅读全文