用pyhon写twitter数据情感分析代码
时间: 2024-02-21 08:02:06 浏览: 232
好的,以下是一个使用Python进行Twitter数据情感分析的代码,具体实现了对Twitter上包含特定关键词的推文进行情感分析,并将结果可视化输出:
```python
import tweepy
from textblob import TextBlob
import matplotlib.pyplot as plt
# Twitter API credentials
consumer_key = "your_consumer_key"
consumer_secret = "your_consumer_secret"
access_key = "your_access_key"
access_secret = "your_access_secret"
# Authenticate to Twitter
auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_key, access_secret)
# Create API object
api = tweepy.API(auth)
# Define the keyword to search for
keyword = "Python"
# Search for tweets containing the keyword
public_tweets = api.search(keyword)
# Initialize variables to store sentiment scores
positive = 0
negative = 0
neutral = 0
# Loop through each tweet and perform sentiment analysis
for tweet in public_tweets:
analysis = TextBlob(tweet.text)
if analysis.sentiment.polarity > 0:
positive += 1
elif analysis.sentiment.polarity < 0:
negative += 1
else:
neutral += 1
# Visualize the sentiment analysis results
labels = ['Positive', 'Negative', 'Neutral']
sizes = [positive, negative, neutral]
colors = ['green', 'red', 'grey']
explode = (0.1, 0.1, 0.1)
plt.pie(sizes, explode=explode, labels=labels, colors=colors,
autopct='%1.1f%%', shadow=True, startangle=90)
plt.axis('equal')
plt.title("Sentiment Analysis of Tweets containing '" + keyword + "'")
plt.show()
```
在这个代码中,我们使用Tweepy和TextBlob库,以及Matplotlib库来实现Twitter数据情感分析。首先,我们设置Twitter API的认证信息,然后定义要搜索的关键词。接着,我们使用Tweepy API对象来搜索包含关键词的推文,并使用TextBlob库进行情感分析。最后,我们使用Matplotlib库将情感分析结果可视化输出。
这个代码的输出结果是一个饼状图,显示了搜索到的推文中积极、消极和中性情感的比例。
阅读全文