class Relu: def __init__(self): self.mask = None def forward(self, x): self.mask = (x <= 0) out = x.copy() out[self.mask] = 0 return out def backward(self, dout): dout[self.mask] = 0 dx = dout return dx
时间: 2024-02-14 18:22:35 浏览: 83
这是一个ReLU激活函数的类实现。ReLU函数的前向传播输出x中所有小于等于0的元素都被置为0,而大于0的元素保持不变。因此,前向传播的过程中需要保存一个掩码mask,用于判断哪些元素需要置为0。反向传播时,输入的dout是损失函数关于该层输出的梯度,因为ReLU函数的导数在输入为0时为0,因此仅需将输入中小于等于0的元素的梯度置为0即可。最终返回该层的输入梯度dx。
相关问题
class UNetEx(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size=3, filters=[16, 32, 64], layers=3, weight_norm=True, batch_norm=True, activation=nn.ReLU, final_activation=None): super().__init__() assert len(filters) > 0 self.final_activation = final_activation self.encoder = create_encoder(in_channels, filters, kernel_size, weight_norm, batch_norm, activation, layers) decoders = [] for i in range(out_channels): decoders.append(create_decoder(1, filters, kernel_size, weight_norm, batch_norm, activation, layers)) self.decoders = nn.Sequential(*decoders) def encode(self, x): tensors = [] indices = [] sizes = [] for encoder in self.encoder: x = encoder(x) sizes.append(x.shape) tensors.append(x) x, ind = F.max_pool2d(x, 2, 2, return_mask=True) indices.append(ind) return x, tensors, indices, sizes def decode(self, _x, _tensors, _indices, _sizes): y = [] for _decoder in self.decoders: x = _x tensors = _tensors[:] indices = _indices[:] sizes = _sizes[:] for decoder in _decoder: tensor = tensors.pop() size = sizes.pop() ind = indices.pop() # 反池化操作,为上采样 x = F.max_unpool2d(x, ind, 2, 2, output_size=size) x = paddle.concat([tensor, x], axis=1) x = decoder(x) y.append(x) return paddle.concat(y, axis=1) def forward(self, x): x, tensors, indices, sizes = self.encode(x) x = self.decode(x, tensors, indices, sizes) if self.final_activation is not None: x = self.final_activation(x) return x 不修改上述神经网络的encoder和decoder的生成方式,用嘴少量的代码实现attention机制,在上述代码里修改。
可以在UNetEx类中加入一个Attention模块,然后在decode函数中使用该Attention模块。具体实现如下:
```
class Attention(nn.Layer):
def __init__(self, in_channels, out_channels):
super().__init__()
self.conv1 = nn.Conv2D(in_channels, out_channels, kernel_size=1)
self.conv2 = nn.Conv2D(out_channels, out_channels, kernel_size=1)
def forward(self, x, y):
x = self.conv1(x)
y = self.conv2(y)
z = paddle.add(x, y)
z = nn.functional.sigmoid(z)
z = paddle.multiply(x, z)
return z
class UNetEx(nn.Layer):
def __init__(self, in_channels, out_channels, kernel_size=3, filters=[16, 32, 64], layers=3,
weight_norm=True, batch_norm=True, activation=nn.ReLU, final_activation=None):
super().__init__()
assert len(filters) > 0
self.final_activation = final_activation
self.encoder = create_encoder(in_channels, filters, kernel_size, weight_norm, batch_norm, activation, layers)
self.attention = Attention(filters[-1], filters[-1])
decoders = []
for i in range(out_channels):
decoders.append(create_decoder(1, filters, kernel_size, weight_norm, batch_norm, activation, layers))
self.decoders = nn.Sequential(*decoders)
def encode(self, x):
tensors = []
indices = []
sizes = []
for encoder in self.encoder:
x = encoder(x)
sizes.append(x.shape)
tensors.append(x)
x, ind = F.max_pool2d(x, 2, 2, return_mask=True)
indices.append(ind)
return x, tensors, indices, sizes
def decode(self, _x, _tensors, _indices, _sizes):
y = []
for _decoder in self.decoders:
x = _x
tensors = _tensors[:]
indices = _indices[:]
sizes = _sizes[:]
for decoder in _decoder:
tensor = tensors.pop()
size = sizes.pop()
ind = indices.pop()
# 反池化操作,为上采样
x = F.max_unpool2d(x, ind, 2, 2, output_size=size)
x = self.attention(tensor, x) # 使用Attention模块
x = decoder(x)
y.append(x)
return paddle.concat(y, axis=1)
def forward(self, x):
x, tensors, indices, sizes = self.encode(x)
x = self.decode(x, tensors, indices, sizes)
if self.final_activation is not None:
x = self.final_activation(x)
return x
```
在该代码中,我们增加了一个Attention类,它接收两个特征图,通过两个1x1卷积层将它们映射到同一维度,然后将它们相加并通过sigmoid函数归一化,最后将第一个特征图与归一化后的结果相乘得到注意力加权后的特征图。在UNetEx类中,我们在decoder函数中使用了Attention类,并将encoder中的最后一层特征图与decoder中的每一层特征图进行注意力加权。这样就实现了在UNetEx中加入Attention机制。
class BiLSTMConvAttRes(BiLSTM): def __init__(self, vocab_size: int, max_seq_len: int, embed_dim: int, hidden_dim: int, n_layer: int, embed_drop: float, rnn_drop: float, n_head: int): super().__init__(vocab_size, embed_dim, hidden_dim, n_layer, embed_drop, rnn_drop) self.attn = nn.MultiheadAttention(hidden_dim, n_head) self.conv = nn.Conv1d(in_channels=hidden_dim, out_channels=hidden_dim, kernel_size=3, padding=1) self.norm = nn.LayerNorm(hidden_dim) def forward(self, x, *args): mask = args[0] if len(args) > 0 else None x = self.encode(x) res = x x = self.conv(x.transpose(1, 2)).relu() x = x.permute(2, 0, 1) x = self.attn(x, x, x, key_padding_mask=mask)[0].transpose(0, 1) x = self.norm(res + x) return self.predict(x)
这是一个基于双向LSTM、卷积神经网络和注意力机制的模型,用于文本分类或序列标注任务。它继承了双向LSTM模型,并在其基础上添加了卷积层、注意力机制和残差连接等组件,其主要组成部分包括:
1. `BiLSTM`:双向LSTM模型,用于提取输入序列中的特征。
2. `nn.MultiheadAttention`:多头注意力机制,用于在提取特征的基础上对不同部分的特征进行加权。
3. `nn.Conv1d`:一维卷积层,用于进一步提取特征。
4. `nn.LayerNorm`:归一化层,用于规范化模型的输出。
在前向传播过程中,输入序列首先通过双向LSTM模型进行特征提取,然后通过卷积层进行进一步的特征提取。接下来,通过多头注意力机制对不同部分的特征进行加权,然后将加权后的特征与原始特征进行残差连接。最后,通过归一化层对模型输出进行规范化,然后通过预测层输出最终结果。
这个模型可以应用于文本分类、序列标注等任务,其中交叉熵损失函数是常用的损失函数。在训练过程中,我们可以使用随机梯度下降(SGD)或Adam优化器进行参数更新。
阅读全文