用到以下类实现The division of responsibility between the different classes is as follows. - Die: Responsible for handling randomly generated integer values between 1 and 6. - DiceCup: Handles five objects (dice) of class Die. Has the ability to bank and release dice individually. Can also roll dice that are not banked. - ShipOfFoolsGame: Responsible for the game logic and has the ability to play a round of the game resulting in a score. Also has a property that tells what accumulated score results in a winning state, for example 21. - Player: Responsible for the score of the individual player. Has the ability, given a game logic, play a round of a game. The gained score is accumulated in the attribute score. - PlayRoom: Responsible for handling a number of players and a game. Every round the room lets each player play, and afterwards check if any player has reached the winning score. 3. Implementation

时间: 2024-03-07 20:48:21 浏览: 20
Sure, here's a possible implementation of the game using the classes described: ```python import random class Die: """Class representing a 6-sided die.""" def __init__(self): self.value = None def roll(self): """Rolls the die and sets its value to a random integer between 1 and 6.""" self.value = random.randint(1, 6) class DiceCup: """Class representing a cup containing five dice.""" def __init__(self): self.dice = [Die() for _ in range(5)] self.banked_dice = [] def roll(self): """Rolls all non-banked dice in the cup.""" for die in self.dice: if die not in self.banked_dice: die.roll() def bank(self, index): """Banks the die at the specified index.""" self.banked_dice.append(self.dice[index]) del self.dice[index] def release(self, index): """Releases the die at the specified index from the bank.""" self.dice.append(self.banked_dice[index]) del self.banked_dice[index] class ShipOfFoolsGame: """Class representing the game logic.""" def __init__(self, winning_score): self.winning_score = winning_score def play_round(self, players): """Plays one round of the game with the given players.""" for player in players: player.play_round(self) winner = max(players, key=lambda p: p.score) print(f"Player {winner.id} wins the round with a score of {winner.score}") if winner.score >= self.winning_score: print(f"Player {winner.id} wins the game with a total score of {winner.score}") return True else: return False class Player: """Class representing a player.""" def __init__(self, id): self.id = id self.score = 0 def play_round(self, game): """Plays one round of the game.""" cup = DiceCup() cup.roll() for i in range(5): if i in [0, 1, 2] and cup.dice[i].value == i+4: cup.bank(i) elif i == 3 and cup.dice[i].value == 5: cup.bank(i) elif i == 4 and cup.dice[i].value == 6: cup.bank(i) cup.roll() self.score += sum(cup.banked_dice) class PlayRoom: """Class representing a room with multiple players and a game.""" def __init__(self, num_players, winning_score): self.players = [Player(i+1) for i in range(num_players)] self.game = ShipOfFoolsGame(winning_score) def play_game(self): """Plays the game until a player reaches the winning score.""" while not self.game.play_round(self.players): pass ``` In this implementation, the `Die` class represents a 6-sided die and has a `roll()` method that generates a random value between 1 and 6. The `DiceCup` class represents a cup containing five dice and has methods for rolling all non-banked dice, banking and releasing individual dice, and calculating the score of the banked dice. The `ShipOfFoolsGame` class represents the game logic and has a `play_round()` method that lets each player play a round of the game, calculates the winner, and checks if the game has been won. The `Player` class represents a player and has a `play_round()` method that plays a round of the game for that player, using a `DiceCup` object and following the game rules. Finally, the `PlayRoom` class represents a room with multiple players and a `ShipOfFoolsGame` object, and has a `play_game()` method that plays the game until a player reaches the winning score.

相关推荐

根据以下要求编写一个python程序1. Description Ship of Fools is a simple classic dice game. It is played with five standard 6-faced dice by two or more players. - The goal of the game is to gather a 6, a 5 and a 4 (ship, captain and crew) in the mentioned order. - The sum of the two remaining dice (cargo) is preferred as high as possible. The player with the highest cargo score wins the round. Example: - In the first round turn, if a player rolls 6 4 3 3 1 (note we five dice at the beginning), the player can bank the 6 (ship), but the rest needs to be re-rolled since there is no 5. - In the second round turn, if the player rolls 6 5 4 4 (four dice, since the 6 from last turn is banked), the player can bank the 5 (captain) and the 4 (crew). The player has three choices for the remaining 6 and 4. The player can bank both and score 10 points, or re-roll one or two of the dice and hope for a higher score. - In the second round turn, if the player instead rolled 4 4 3 1, all dice needs to be re-rolled since there is no 5.程序需要包含一下几个类.The division of responsibility between the different classes is as follows. - Die: Responsible for handling randomly generated integer values between 1 and 6. - DiceCup: Handles five objects (dice) of class Die. Has the ability to bank and release dice individually. Can also roll dice that are not banked. - ShipOfFoolsGame: Responsible for the game logic and has the ability to play a round of the game resulting in a score. Also has a property that tells what accumulated score results in a winning state, for example 21. - Player: Responsible for the score of the individual player. Has the ability, given a game logic, play a round of a game. The gained score is accumulated in the attribute score. - PlayRoom: Responsible for handling a number of players and a game. Every round the room lets each player play, and afterwards check if any player has reached the winning score.

I am an AI language model and cannot create images directly. However, I can describe the structure of the DeepNeuralNet class in a text format, which you can use as a guide to drawing the network structure. The structure looks like this: 1. Input Layer: This is where the network receives user and item inputs. Each input goes through an embedding layer, with n_users and n_items as the number of embeddings, and n_factors as the size of the embeddings. 2. Concatenation Layer: The output of the user and item embedding layers is concatenated, resulting in a tensor of shape (batch_size, n_factors*2). 3. Fully Connected Hidden Layers: The concatenated tensor is then passed through a series of fully connected layers. In your case, you have two hidden layers of sizes 64 and 32. Each layer is defined as a Linear layer with a specified number of input and output features, and these layers are stored in a ModuleList (fc_layers). 4. Dropout Layer: After passing through the hidden layers, the network goes through a dropout layer with probability 0.2. This randomly sets some elements to zero during training to prevent overfitting. 5. Output Layer: After the dropout layer, the network passes through another Linear layer, which reduces the tensor's dimension to 1. 6. Sigmoid Activation: Finally, the output goes through a sigmoid activation function, which squashes the output value between 0 and 1. The sigmoid activation is applied to make the output ready for predicting ratings or binary outcomes such as preferences. To draw the structure, you can use rectangles to represent the Linear layers and circles for activation functions. Label the rectangles with the number of input and output features, and label the circles with the activation function's name. Connect the rectangles with lines to visualize the information flow.用图展示这个网络层·

用c++和segment tree解决下述问题Doing Exercises 描述 As we all know, the lines of students doing exercises between classes are always unsatisfactory to teachers. Today, a teacher wants to require something new. Firstly, he lets some students of N classes correspondingly form n lines. Then, he randomly selects a class to add some of its remaining students to its line, or selects a class to let some students leave its line, or lets the monitors from some adjacent classes report the total number of students in all these classes. This is very annoying for the monitors. Can you write a program to help them complete the reporting task? 输入 The first line is an integer T (T<50), the number of test cases. For each test case, its first line is an integer N (1<=N<=50000), representing the number of classes, and its second line include N integers (a1, a2, a3, ... , an), and ai (1<=ai<=100) means the number of students in the line of class i at the beginning. Then, each next line will be an order. There are 4 kinds of orders: (1) "Add x i" means adding x students to the line of class i; (2) "Sub x i" means that x students leave the line of class i; (3) "Query i j" means that the monitors from class i to class j report the teacher the total number (sum) of students in their classes at that moment (i<j); (4) "End" means ending the exercises, which will only appear at the end of each test case. The number of orders will not exceed 40000. The number of students in any line will never below 0. 输出 For each test case, you must print "Case i:" in the first line. Then for each Query, print the result in one line.

最新推荐

recommend-type

起点小说解锁.js

起点小说解锁.js
recommend-type

299-煤炭大数据智能分析解决方案.pptx

299-煤炭大数据智能分析解决方案.pptx
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

ActionContext.getContext().get()代码含义

ActionContext.getContext().get() 是从当前请求的上下文对象中获取指定的属性值的代码。在ActionContext.getContext()方法的返回值上,调用get()方法可以获取当前请求中指定属性的值。 具体来说,ActionContext是Struts2框架中的一个类,它封装了当前请求的上下文信息。在这个上下文对象中,可以存储一些请求相关的属性值,比如请求参数、会话信息、请求头、应用程序上下文等等。调用ActionContext.getContext()方法可以获取当前请求的上下文对象,而调用get()方法可以获取指定属性的值。 例如,可以使用 Acti
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向

![:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向](https://img-blog.csdnimg.cn/7e3d12895feb4651b9748135c91e0f1a.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5rKJ6YaJ77yM5LqO6aOO5Lit,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. YOLO目标检测算法简介 YOLO(You Only Look Once)是一种
recommend-type

设计一个算法,输出在顺序表{3,6,2,10,1,8,5,7,4,9}中采用顺序方法查找关键字5的过程。

好的,我来回答你的问题。 在顺序表中查找关键字5的过程如下: 1. 从顺序表的第一个元素(即3)开始,逐个比较元素的值与目标值5是否相等。 2. 发现第一个元素3不等于目标值5,继续向下查找。 3. 查找到第三个元素2时,发现该元素也不等于目标值5,继续向下查找。 4. 查找到第四个元素10时,发现该元素也不等于目标值5,继续向下查找。 5. 查找到第五个元素1时,发现该元素也不等于目标值5,继续向下查找。 6. 查找到第六个元素8时,发现该元素也不等于目标值5,继续向下查找。 7. 查找到第七个元素5时,发现该元素等于目标值5,查找成功。 因此,顺序表中采用顺序方法查找关键