inception滚动轴承故障诊断数据集代码

时间: 2023-11-13 21:04:21 浏览: 45
以下是一个使用Inception网络进行滚动轴承故障诊断的代码示例,使用的数据集是一个经过处理的滚动轴承故障数据集(包含正常和故障样本)。 首先,我们需要导入必要的库: ```python import tensorflow as tf from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, Dropout, Dense, Flatten from tensorflow.keras.models import Model ``` 然后,定义输入数据的形状和类别数: ```python input_shape = (64, 64, 1) num_classes = 10 ``` 接下来,定义Inception网络的架构和参数: ```python def InceptionV1(input_shape, num_classes): input_layer = Input(shape=input_shape) # Block 1 conv1_7x7_s2 = Conv2D(64, (7, 7), strides=(2, 2), padding='same', activation='relu', name='conv1/7x7_s2')(input_layer) pool1_3x3_s2 = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding='same', name='pool1/3x3_s2')(conv1_7x7_s2) pool1_norm1 = tf.nn.local_response_normalization(pool1_3x3_s2, depth_radius=2, alpha=2e-05, beta=0.75, name='pool1/norm1') # Block 2 conv2_3x3_reduce = Conv2D(64, (1, 1), padding='same', activation='relu', name='conv2/3x3_reduce')(pool1_norm1) conv2_3x3 = Conv2D(192, (3, 3), padding='same', activation='relu', name='conv2/3x3')(conv2_3x3_reduce) conv2_norm2 = tf.nn.local_response_normalization(conv2_3x3, depth_radius=2, alpha=2e-05, beta=0.75, name='conv2/norm2') pool2_3x3_s2 = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding='same', name='pool2/3x3_s2')(conv2_norm2) # Inception 3a inception_3a_1x1 = Conv2D(64, (1, 1), padding='same', activation='relu', name='inception_3a/1x1')(pool2_3x3_s2) inception_3a_3x3_reduce = Conv2D(96, (1, 1), padding='same', activation='relu', name='inception_3a/3x3_reduce')(pool2_3x3_s2) inception_3a_3x3 = Conv2D(128, (3, 3), padding='same', activation='relu', name='inception_3a/3x3')(inception_3a_3x3_reduce) inception_3a_5x5_reduce = Conv2D(16, (1, 1), padding='same', activation='relu', name='inception_3a/5x5_reduce')(pool2_3x3_s2) inception_3a_5x5 = Conv2D(32, (5, 5), padding='same', activation='relu', name='inception_3a/5x5')(inception_3a_5x5_reduce) inception_3a_pool = MaxPooling2D(pool_size=(3, 3), strides=(1, 1), padding='same', name='inception_3a/pool')(pool2_3x3_s2) inception_3a_pool_proj = Conv2D(32, (1, 1), padding='same', activation='relu', name='inception_3a/pool_proj')(inception_3a_pool) inception_3a_output = tf.keras.layers.concatenate([inception_3a_1x1, inception_3a_3x3, inception_3a_5x5, inception_3a_pool_proj], axis=3, name='inception_3a/output') # Inception 3b inception_3b_1x1 = Conv2D(128, (1, 1), padding='same', activation='relu', name='inception_3b/1x1')(inception_3a_output) inception_3b_3x3_reduce = Conv2D(128, (1, 1), padding='same', activation='relu', name='inception_3b/3x3_reduce')(inception_3a_output) inception_3b_3x3 = Conv2D(192, (3, 3), padding='same', activation='relu', name='inception_3b/3x3')(inception_3b_3x3_reduce) inception_3b_5x5_reduce = Conv2D(32, (1, 1), padding='same', activation='relu', name='inception_3b/5x5_reduce')(inception_3a_output) inception_3b_5x5 = Conv2D(96, (5, 5), padding='same', activation='relu', name='inception_3b/5x5')(inception_3b_5x5_reduce) inception_3b_pool = MaxPooling2D(pool_size=(3, 3), strides=(1, 1), padding='same', name='inception_3b/pool')(inception_3a_output) inception_3b_pool_proj = Conv2D(64, (1, 1), padding='same', activation='relu', name='inception_3b/pool_proj')(inception_3b_pool) inception_3b_output = tf.keras.layers.concatenate([inception_3b_1x1, inception_3b_3x3, inception_3b_5x5, inception_3b_pool_proj], axis=3, name='inception_3b/output') # Inception 4a inception_4a_1x1 = Conv2D(192, (1, 1), padding='same', activation='relu', name='inception_4a/1x1')(inception_3b_output) inception_4a_3x3_reduce = Conv2D(96, (1, 1), padding='same', activation='relu', name='inception_4a/3x3_reduce')(inception_3b_output) inception_4a_3x3 = Conv2D(208, (3, 3), padding='same', activation='relu', name='inception_4a/3x3')(inception_4a_3x3_reduce) inception_4a_5x5_reduce = Conv2D(16, (1, 1), padding='same', activation='relu', name='inception_4a/5x5_reduce')(inception_3b_output) inception_4a_5x5 = Conv2D(48, (5, 5), padding='same', activation='relu', name='inception_4a/5x5')(inception_4a_5x5_reduce) inception_4a_pool = MaxPooling2D(pool_size=(3, 3), strides=(1, 1), padding='same', name='inception_4a/pool')(inception_3b_output) inception_4a_pool_proj = Conv2D(64, (1, 1), padding='same', activation='relu', name='inception_4a/pool_proj')(inception_4a_pool) inception_4a_output = tf.keras.layers.concatenate([inception_4a_1x1, inception_4a_3x3, inception_4a_5x5, inception_4a_pool_proj], axis=3, name='inception_4a/output') # Inception 4b inception_4b_1x1 = Conv2D(160, (1, 1), padding='same', activation='relu', name='inception_4b/1x1')(inception_4a_output) inception_4b_3x3_reduce = Conv2D(112, (1, 1), padding='same', activation='relu', name='inception_4b/3x3_reduce')(inception_4a_output) inception_4b_3x3 = Conv2D(224, (3, 3), padding='same', activation='relu', name='inception_4b/3x3')(inception_4b_3x3_reduce) inception_4b_5x5_reduce = Conv2D(24, (1, 1), padding='same', activation='relu', name='inception_4b/5x5_reduce')(inception_4a_output) inception_4b_5x5 = Conv2D(64, (5, 5), padding='same', activation='relu', name='inception_4b/5x5')(inception_4b_5x5_reduce) inception_4b_pool = MaxPooling2D(pool_size=(3, 3), strides=(1, 1), padding='same', name='inception_4b/pool')(inception_4a_output) inception_4b_pool_proj = Conv2D(64, (1, 1), padding='same', activation='relu', name='inception_4b/pool_proj')(inception_4b_pool) inception_4b_output = tf.keras.layers.concatenate([inception_4b_1x1, inception_4b_3x3, inception_4b_5x5, inception_4b_pool_proj], axis=3, name='inception_4b/output') # Inception 4c inception_4c_1x1 = Conv2D(128, (1, 1), padding='same', activation='relu', name='inception_4c/1x1')(inception_4b_output) inception_4c_3x3_reduce = Conv2D(128, (1, 1), padding='same', activation='relu', name='inception_4c/3x3_reduce')(inception_4b_output) inception_4c_3x3 = Conv2D(256, (3, 3), padding='same', activation='relu', name='inception_4c/3x3')(inception_4c_3x3_reduce) inception_4c_5x5_reduce = Conv2D(24, (1, 1), padding='same', activation='relu', name='inception_4c/5x5_reduce')(inception_4b_output) inception_4c_5x5 = Conv2D(64, (5, 5), padding='same', activation='relu', name='inception_4c/5x5')(inception_4c_5x5_reduce) inception_4c_pool = MaxPooling2D(pool_size=(3, 3), strides=(1, 1), padding='same', name='inception_4c/pool')(inception_4b_output) inception_4c_pool_proj = Conv2D(64, (1, 1), padding='same', activation='relu', name='inception_4c/pool_proj')(inception_4c_pool) inception_4c_output = tf.keras.layers.concatenate([inception_4c_1x1, inception_4c_3x3, inception_4c_5x5, inception_4c_pool_proj], axis=3, name='inception_4c/output') # Inception 4d inception_4d_1x1 = Conv2D(112, (1, 1), padding='same', activation='relu', name='inception_4d/1x1')(inception_4c_output) inception_4d_3x3_reduce = Conv2D(144, (1, 1), padding='same', activation='relu', name='inception_4d/3x3_reduce')(inception_4c_output) inception_4d_3x3 = Conv2D(288, (3, 3), padding='same', activation='relu', name='inception_4d/3x3')(inception_4d_3x3_reduce) inception_4d_5x5_reduce = Conv2D(32, (1, 1), padding='same', activation='relu', name='inception_4d/5x5_reduce')(inception_4c_output) inception_4d_5x5 = Conv2D(64, (5, 5), padding='same', activation='relu', name='inception_4d/5x5')(inception_4d_5x5_reduce) inception_4d_pool = MaxPooling2D(pool_size=(3, 3), strides=(1, 1), padding='same', name='inception_4d/pool')(inception_4c_output) inception_4d_pool_proj = Conv2D(64, (1, 1), padding='same', activation='relu', name='inception_4d/pool_proj')(inception_4d_pool) inception_4d_output = tf.keras.layers.concatenate([inception_4d_1x1, inception_4d_3x3, inception_4d_5x5, inception_4d_pool_proj], axis=3, name='inception_4d/output') # Inception 4e inception_4e_1x1 = Conv2D(256, (1, 1), padding='same', activation='relu', name='inception_4e/1x1')(inception_4d_output) inception_4e_3x3_reduce = Conv2D(160, (1, 1), padding='same', activation='relu', name='inception_4e/3x3_reduce')(inception_4d_output) inception_4e_3x3 = Conv2D(320, (3, 3), padding='same', activation='relu', name='inception_4e/3x3')(inception_4e_3x3_reduce) inception_4e_5x5_reduce = Conv2D(32, (1, 1), padding='same', activation='relu', name='inception_4e/5x5_reduce')(inception_4d_output) inception_4e_5x5 = Conv2D(128, (5, 5), padding='same', activation='relu', name='inception_4e/5x5')(inception_4e_5x5_reduce) inception_4e_pool = MaxPooling2D(pool_size=(3, 3), strides=(1, 1), padding='same', name='inception_4e/pool')(inception_4d_output) inception_4e_pool_proj = Conv2D(128, (1, 1), padding='same', activation='relu', name='inception_4e/pool_proj')(inception_4e_pool) inception_4e_output = tf.keras.layers.concatenate([inception_4e_1x1, inception_4e_3x3, inception_4e_5x5, inception_4e_pool_proj], axis=3, name='inception_4e/output') # Pooling and Dropout layers pool4_3x3_s2 = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding='same', name='pool4/3x3_s2')(inception_4e_output) dropout_layer1 = Dropout(0.4)(pool4_3x3_s2) flatten_layer = Flatten()(dropout_layer1) dense_layer1 = Dense(1024, activation='relu')(flatten_layer) dropout_layer2 = Dropout(0.4)(dense_layer1) # Output layer output_layer = Dense(num_classes, activation='softmax')(dropout_layer2) # Compile the model model = Model(inputs=input_layer, outputs=output_layer) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) return model model = InceptionV1(input_shape, num_classes) model.summary() ``` 接下来,我们可以使用该模型在数据集上进行训练和评估: ```python # Load the dataset train_data = tf.keras.preprocessing.image_dataset_from_directory( 'path/to/dataset', validation_split=0.2, subset='training', seed=123, image_size=(64, 64), batch_size=32) test_data = tf.keras.preprocessing.image_dataset_from_directory( 'path/to/dataset', validation_split=0.2, subset='validation', seed=123, image_size=(64, 64), batch_size=32) # Train the model history = model.fit( train_data, validation_data=test_data, epochs=10 ) # Evaluate the model test_loss, test_acc = model.evaluate(test_data) print('Test accuracy:', test_acc) ``` 这是一个基本的使用Inception网络进行滚动轴承故障诊断的代码示例。您可能需要根据自己的数据集和问题进行修改和调整。

相关推荐

最新推荐

recommend-type

pytorch之inception_v3的实现案例

今天小编就为大家分享一篇pytorch之inception_v3的实现案例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

Tensorflow 2.1训练 实战 cifar10 完整代码 准确率 88.6% 模型 Resnet SENet Inception

Inception: 每一层都用不同的核(1×1,3×3,5×5)来学习.防止因为过小的核或者过大的核而学不到图片的特征。 用Resnet ,SENet, Inceptiont网络训练Cifar10 或者Cifar 100. 训练数据:Cifar10 或者 Cifar 100 ...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

导入numpy库,创建两个包含9个随机数的3*3的矩阵,将两个矩阵分别打印出来,计算两个数组的点积并打印出来。(random.randn()、dot()函数)

可以的,以下是代码实现: ```python import numpy as np # 创建两个包含9个随机数的3*3的矩阵 matrix1 = np.random.randn(3, 3) matrix2 = np.random.randn(3, 3) # 打印两个矩阵 print("Matrix 1:\n", matrix1) print("Matrix 2:\n", matrix2) # 计算两个数组的点积并打印出来 dot_product = np.dot(matrix1, matrix2) print("Dot product:\n", dot_product) ``` 希望