inception滚动轴承故障诊断数据集代码
时间: 2023-11-13 07:04:21 浏览: 80
根据轴承的振动序列数据来诊断轴承故障(python代码)
以下是一个使用Inception网络进行滚动轴承故障诊断的代码示例,使用的数据集是一个经过处理的滚动轴承故障数据集(包含正常和故障样本)。
首先,我们需要导入必要的库:
```python
import tensorflow as tf
from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, Dropout, Dense, Flatten
from tensorflow.keras.models import Model
```
然后,定义输入数据的形状和类别数:
```python
input_shape = (64, 64, 1)
num_classes = 10
```
接下来,定义Inception网络的架构和参数:
```python
def InceptionV1(input_shape, num_classes):
input_layer = Input(shape=input_shape)
# Block 1
conv1_7x7_s2 = Conv2D(64, (7, 7), strides=(2, 2), padding='same', activation='relu', name='conv1/7x7_s2')(input_layer)
pool1_3x3_s2 = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding='same', name='pool1/3x3_s2')(conv1_7x7_s2)
pool1_norm1 = tf.nn.local_response_normalization(pool1_3x3_s2, depth_radius=2, alpha=2e-05, beta=0.75, name='pool1/norm1')
# Block 2
conv2_3x3_reduce = Conv2D(64, (1, 1), padding='same', activation='relu', name='conv2/3x3_reduce')(pool1_norm1)
conv2_3x3 = Conv2D(192, (3, 3), padding='same', activation='relu', name='conv2/3x3')(conv2_3x3_reduce)
conv2_norm2 = tf.nn.local_response_normalization(conv2_3x3, depth_radius=2, alpha=2e-05, beta=0.75, name='conv2/norm2')
pool2_3x3_s2 = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding='same', name='pool2/3x3_s2')(conv2_norm2)
# Inception 3a
inception_3a_1x1 = Conv2D(64, (1, 1), padding='same', activation='relu', name='inception_3a/1x1')(pool2_3x3_s2)
inception_3a_3x3_reduce = Conv2D(96, (1, 1), padding='same', activation='relu', name='inception_3a/3x3_reduce')(pool2_3x3_s2)
inception_3a_3x3 = Conv2D(128, (3, 3), padding='same', activation='relu', name='inception_3a/3x3')(inception_3a_3x3_reduce)
inception_3a_5x5_reduce = Conv2D(16, (1, 1), padding='same', activation='relu', name='inception_3a/5x5_reduce')(pool2_3x3_s2)
inception_3a_5x5 = Conv2D(32, (5, 5), padding='same', activation='relu', name='inception_3a/5x5')(inception_3a_5x5_reduce)
inception_3a_pool = MaxPooling2D(pool_size=(3, 3), strides=(1, 1), padding='same', name='inception_3a/pool')(pool2_3x3_s2)
inception_3a_pool_proj = Conv2D(32, (1, 1), padding='same', activation='relu', name='inception_3a/pool_proj')(inception_3a_pool)
inception_3a_output = tf.keras.layers.concatenate([inception_3a_1x1, inception_3a_3x3, inception_3a_5x5, inception_3a_pool_proj], axis=3, name='inception_3a/output')
# Inception 3b
inception_3b_1x1 = Conv2D(128, (1, 1), padding='same', activation='relu', name='inception_3b/1x1')(inception_3a_output)
inception_3b_3x3_reduce = Conv2D(128, (1, 1), padding='same', activation='relu', name='inception_3b/3x3_reduce')(inception_3a_output)
inception_3b_3x3 = Conv2D(192, (3, 3), padding='same', activation='relu', name='inception_3b/3x3')(inception_3b_3x3_reduce)
inception_3b_5x5_reduce = Conv2D(32, (1, 1), padding='same', activation='relu', name='inception_3b/5x5_reduce')(inception_3a_output)
inception_3b_5x5 = Conv2D(96, (5, 5), padding='same', activation='relu', name='inception_3b/5x5')(inception_3b_5x5_reduce)
inception_3b_pool = MaxPooling2D(pool_size=(3, 3), strides=(1, 1), padding='same', name='inception_3b/pool')(inception_3a_output)
inception_3b_pool_proj = Conv2D(64, (1, 1), padding='same', activation='relu', name='inception_3b/pool_proj')(inception_3b_pool)
inception_3b_output = tf.keras.layers.concatenate([inception_3b_1x1, inception_3b_3x3, inception_3b_5x5, inception_3b_pool_proj], axis=3, name='inception_3b/output')
# Inception 4a
inception_4a_1x1 = Conv2D(192, (1, 1), padding='same', activation='relu', name='inception_4a/1x1')(inception_3b_output)
inception_4a_3x3_reduce = Conv2D(96, (1, 1), padding='same', activation='relu', name='inception_4a/3x3_reduce')(inception_3b_output)
inception_4a_3x3 = Conv2D(208, (3, 3), padding='same', activation='relu', name='inception_4a/3x3')(inception_4a_3x3_reduce)
inception_4a_5x5_reduce = Conv2D(16, (1, 1), padding='same', activation='relu', name='inception_4a/5x5_reduce')(inception_3b_output)
inception_4a_5x5 = Conv2D(48, (5, 5), padding='same', activation='relu', name='inception_4a/5x5')(inception_4a_5x5_reduce)
inception_4a_pool = MaxPooling2D(pool_size=(3, 3), strides=(1, 1), padding='same', name='inception_4a/pool')(inception_3b_output)
inception_4a_pool_proj = Conv2D(64, (1, 1), padding='same', activation='relu', name='inception_4a/pool_proj')(inception_4a_pool)
inception_4a_output = tf.keras.layers.concatenate([inception_4a_1x1, inception_4a_3x3, inception_4a_5x5, inception_4a_pool_proj], axis=3, name='inception_4a/output')
# Inception 4b
inception_4b_1x1 = Conv2D(160, (1, 1), padding='same', activation='relu', name='inception_4b/1x1')(inception_4a_output)
inception_4b_3x3_reduce = Conv2D(112, (1, 1), padding='same', activation='relu', name='inception_4b/3x3_reduce')(inception_4a_output)
inception_4b_3x3 = Conv2D(224, (3, 3), padding='same', activation='relu', name='inception_4b/3x3')(inception_4b_3x3_reduce)
inception_4b_5x5_reduce = Conv2D(24, (1, 1), padding='same', activation='relu', name='inception_4b/5x5_reduce')(inception_4a_output)
inception_4b_5x5 = Conv2D(64, (5, 5), padding='same', activation='relu', name='inception_4b/5x5')(inception_4b_5x5_reduce)
inception_4b_pool = MaxPooling2D(pool_size=(3, 3), strides=(1, 1), padding='same', name='inception_4b/pool')(inception_4a_output)
inception_4b_pool_proj = Conv2D(64, (1, 1), padding='same', activation='relu', name='inception_4b/pool_proj')(inception_4b_pool)
inception_4b_output = tf.keras.layers.concatenate([inception_4b_1x1, inception_4b_3x3, inception_4b_5x5, inception_4b_pool_proj], axis=3, name='inception_4b/output')
# Inception 4c
inception_4c_1x1 = Conv2D(128, (1, 1), padding='same', activation='relu', name='inception_4c/1x1')(inception_4b_output)
inception_4c_3x3_reduce = Conv2D(128, (1, 1), padding='same', activation='relu', name='inception_4c/3x3_reduce')(inception_4b_output)
inception_4c_3x3 = Conv2D(256, (3, 3), padding='same', activation='relu', name='inception_4c/3x3')(inception_4c_3x3_reduce)
inception_4c_5x5_reduce = Conv2D(24, (1, 1), padding='same', activation='relu', name='inception_4c/5x5_reduce')(inception_4b_output)
inception_4c_5x5 = Conv2D(64, (5, 5), padding='same', activation='relu', name='inception_4c/5x5')(inception_4c_5x5_reduce)
inception_4c_pool = MaxPooling2D(pool_size=(3, 3), strides=(1, 1), padding='same', name='inception_4c/pool')(inception_4b_output)
inception_4c_pool_proj = Conv2D(64, (1, 1), padding='same', activation='relu', name='inception_4c/pool_proj')(inception_4c_pool)
inception_4c_output = tf.keras.layers.concatenate([inception_4c_1x1, inception_4c_3x3, inception_4c_5x5, inception_4c_pool_proj], axis=3, name='inception_4c/output')
# Inception 4d
inception_4d_1x1 = Conv2D(112, (1, 1), padding='same', activation='relu', name='inception_4d/1x1')(inception_4c_output)
inception_4d_3x3_reduce = Conv2D(144, (1, 1), padding='same', activation='relu', name='inception_4d/3x3_reduce')(inception_4c_output)
inception_4d_3x3 = Conv2D(288, (3, 3), padding='same', activation='relu', name='inception_4d/3x3')(inception_4d_3x3_reduce)
inception_4d_5x5_reduce = Conv2D(32, (1, 1), padding='same', activation='relu', name='inception_4d/5x5_reduce')(inception_4c_output)
inception_4d_5x5 = Conv2D(64, (5, 5), padding='same', activation='relu', name='inception_4d/5x5')(inception_4d_5x5_reduce)
inception_4d_pool = MaxPooling2D(pool_size=(3, 3), strides=(1, 1), padding='same', name='inception_4d/pool')(inception_4c_output)
inception_4d_pool_proj = Conv2D(64, (1, 1), padding='same', activation='relu', name='inception_4d/pool_proj')(inception_4d_pool)
inception_4d_output = tf.keras.layers.concatenate([inception_4d_1x1, inception_4d_3x3, inception_4d_5x5, inception_4d_pool_proj], axis=3, name='inception_4d/output')
# Inception 4e
inception_4e_1x1 = Conv2D(256, (1, 1), padding='same', activation='relu', name='inception_4e/1x1')(inception_4d_output)
inception_4e_3x3_reduce = Conv2D(160, (1, 1), padding='same', activation='relu', name='inception_4e/3x3_reduce')(inception_4d_output)
inception_4e_3x3 = Conv2D(320, (3, 3), padding='same', activation='relu', name='inception_4e/3x3')(inception_4e_3x3_reduce)
inception_4e_5x5_reduce = Conv2D(32, (1, 1), padding='same', activation='relu', name='inception_4e/5x5_reduce')(inception_4d_output)
inception_4e_5x5 = Conv2D(128, (5, 5), padding='same', activation='relu', name='inception_4e/5x5')(inception_4e_5x5_reduce)
inception_4e_pool = MaxPooling2D(pool_size=(3, 3), strides=(1, 1), padding='same', name='inception_4e/pool')(inception_4d_output)
inception_4e_pool_proj = Conv2D(128, (1, 1), padding='same', activation='relu', name='inception_4e/pool_proj')(inception_4e_pool)
inception_4e_output = tf.keras.layers.concatenate([inception_4e_1x1, inception_4e_3x3, inception_4e_5x5, inception_4e_pool_proj], axis=3, name='inception_4e/output')
# Pooling and Dropout layers
pool4_3x3_s2 = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding='same', name='pool4/3x3_s2')(inception_4e_output)
dropout_layer1 = Dropout(0.4)(pool4_3x3_s2)
flatten_layer = Flatten()(dropout_layer1)
dense_layer1 = Dense(1024, activation='relu')(flatten_layer)
dropout_layer2 = Dropout(0.4)(dense_layer1)
# Output layer
output_layer = Dense(num_classes, activation='softmax')(dropout_layer2)
# Compile the model
model = Model(inputs=input_layer, outputs=output_layer)
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
return model
model = InceptionV1(input_shape, num_classes)
model.summary()
```
接下来,我们可以使用该模型在数据集上进行训练和评估:
```python
# Load the dataset
train_data = tf.keras.preprocessing.image_dataset_from_directory(
'path/to/dataset',
validation_split=0.2,
subset='training',
seed=123,
image_size=(64, 64),
batch_size=32)
test_data = tf.keras.preprocessing.image_dataset_from_directory(
'path/to/dataset',
validation_split=0.2,
subset='validation',
seed=123,
image_size=(64, 64),
batch_size=32)
# Train the model
history = model.fit(
train_data,
validation_data=test_data,
epochs=10
)
# Evaluate the model
test_loss, test_acc = model.evaluate(test_data)
print('Test accuracy:', test_acc)
```
这是一个基本的使用Inception网络进行滚动轴承故障诊断的代码示例。您可能需要根据自己的数据集和问题进行修改和调整。
阅读全文