matlab如何根据单应性矩阵计算相机内参
时间: 2023-06-14 15:06:22 浏览: 250
根据单应性矩阵计算相机内参的方法如下:
1. 根据单应性矩阵H,构建相应的投影矩阵P。
2. 对于每个图像点(x,y),使用P将其投影到三维空间中的点(X,Y,Z)。
3. 根据三维空间中的点(X,Y,Z)和对应的图像点(x,y),使用相机模型计算相机坐标系下的坐标(xc,yc,zc)。
4. 根据相机坐标系下的坐标(xc,yc,zc),可得到相机内参矩阵K。
5. 相机内参矩阵K的形式为:
K = [f s cx
0 f cy
0 0 1]
其中,f为焦距,s为相机的skew参数,cx和cy为图像的中心点。
6. 相机内参矩阵K的计算可以使用SVD分解方法,具体实现可以使用MATLAB中的svd函数。
以下是MATLAB代码示例:
```
% 定义单应性矩阵H
H = ...
% 构建投影矩阵P
P = ...
% 投影点到三维空间中的点
[X,Y,Z] = ...
% 计算相机坐标系下的坐标
[xc,yc,zc] = ...
% 使用SVD方法计算相机内参矩阵K
[U,S,V] = svd([xc,yc,zc],'econ');
K = [S(1,1) S(1,2) S(1,3); 0 S(2,2) S(2,3); 0 0 S(3,3)];
% 显示相机内参矩阵K
disp(K);
```
阅读全文