pytorch load model inference
时间: 2023-08-09 09:00:53 浏览: 183
PyTorch使用cpu加载模型运算方式
pytorch可以通过多种方式来加载模型并进行推理。下面是一个使用pytorch的加载和推理模型的简单示例。
首先,我们需要导入所需的库:
```python
import torch
import torchvision
```
然后,我们需要定义一个模型的类。例如,我们将使用预训练的ResNet模型进行示范:
```python
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
self.resnet = torchvision.models.resnet18(pretrained=True)
def forward(self, x):
out = self.resnet(x)
return out
```
接下来,我们需要加载保存的模型权重:
```python
model = Model()
model.load_state_dict(torch.load('model_weights.pth'))
```
现在我们可以使用加载的模型进行推理了。假设我们有一张图片保存在test_img.jpg中:
```python
from PIL import Image
img = Image.open('test_img.jpg')
img_transform = torchvision.transforms.Compose([torchvision.transforms.ToTensor()])
input_img = img_transform(img).unsqueeze(0)
output = model(input_img)
```
现在,output将是模型对输入图像的推理结果。
最后,如果我们想保存输出结果作为图像,我们可以执行以下操作:
```python
output_img = torchvision.transforms.ToPILImage()(output.squeeze().detach())
output_img.save('output_img.jpg')
```
这样就完成了pytorch模型的加载和推理过程。当然,具体的实现会根据你使用的模型和数据有所不同,但基本的过程和步骤是相似的。
阅读全文