tqdm.monitor_interval = 0
时间: 2024-04-25 20:23:36 浏览: 149
`tqdm.monitor_interval = 0`是用于设置tqdm库的监控间隔。tqdm是一个用于在循环中显示进度条的Python库。默认情况下,tqdm会每隔0.1秒更新一次进度条的显示。
通过将`tqdm.monitor_interval`设置为0,可以禁用tqdm的监控间隔。这意味着进度条将不会自动更新,而需要手动调用`tqdm.update()`来更新进度条的显示。
这个设置可以在某些情况下提高程序的性能,特别是当循环迭代非常快时,禁用监控间隔可以减少不必要的刷新操作,从而提高程序的运行效率。但同时也意味着进度条的显示将不会及时更新,可能会导致进度信息的不准确性。因此,在使用这个设置时需要根据具体情况权衡利弊。
相关问题
def train(self) -> None: c = self._config print(c) step = 0 for epoch in range(c.epochs): prog_bar = tqdm(self._train_data_loader) for i, batch in enumerate(prog_bar): batch = batch[0].to(self._device) loss = self._step(batch) prog_bar.set_description(f'Train loss: {loss:.2f}') self._tensorboard.add_scalar('train/loss', loss, step) if i % c.visualization_interval == 0: self._visualize_images(batch, step, 'train') if i != 0 and i % c.snapshot_interval == 0: self._save_snapshot(step) step += 1
这是一个Python中的train函数,主要作用是训练一个AI模型。函数中的参数包括一个配置对象c,一个训练数据加载器_train_data_loader,以及一个设备对象_device。函数的具体流程如下:
1. 遍历若干个epochs,每个epoch表示将整个训练数据集遍历一遍。
2. 对于每个epoch,遍历训练数据加载器中的每个batch。
3. 对于每个batch,将其发送到设备_device上,并调用_step函数计算出loss。
4. 打印出当前训练的loss值,并将其保存到tensorboard中。
5. 如果符合可视化间隔的条件,则调用_visualize_images函数对当前batch进行可视化。
6. 如果符合快照间隔的条件,则调用_save_snapshot函数保存当前的模型快照。
7. step值加1,表示训练步骤数加1。
总之,该函数是一个训练AI模型的通用框架,可以根据具体应用场景进行相应的修改和扩展。
def get_rolling_window_multistep(forecasting_length, interval_length, window_length, features, labels): output_features = np.zeros((1, features.shape[0], window_length)) output_labels = np.zeros((1, 1, forecasting_length)) if features.shape[1] != labels.shape[1]: assert 'cant process such data' else: output_features = np.zeros((1, features.shape[0], window_length)) output_labels = np.zeros((1, 1, forecasting_length)) for index in tqdm.tqdm(range(0, features.shape[1]-interval_length-window_length-forecasting_length+1), desc='data preparing'): output_features = np.concatenate((output_features, np.expand_dims(features[:, index:index+window_length], axis=0))) output_labels = np.concatenate((output_labels, np.expand_dims(labels[:, index+interval_length+window_length: index+interval_length+window_length+forecasting_length], axis=0))) output_features = output_features[1:, :, :] output_labels = output_labels[1:, :, :] return torch.from_numpy(output_features), torch.from_numpy(output_labels)什么意思
这段代码实现了一个滚动窗口的多步时间序列预测的数据处理函数。函数接收四个参数:预测长度 forecasting_length,间隔长度 interval_length,滑动窗口长度 window_length,以及特征 features 和标签 labels。函数的输出是一个元组,其中包含了处理后的特征和标签,两者都被转换成了 PyTorch 的 Tensor 格式。
该函数的主要实现步骤是:遍历特征序列,从每个时间点开始,每隔 interval_length 个时间点,取出长度为 window_length 的滑动窗口作为输入特征,同时取出该窗口后 forecasting_length 个时间点的数据作为输出标签。这样,我们就可以将时间序列分成多个滑动窗口,每个窗口都对应一个输出标签。最终,函数返回的特征和标签分别是一个三维的 Tensor,第一维表示样本数量,第二维表示时间步数(即窗口长度),第三维表示特征或标签的维度。
阅读全文