详细介绍一下GBDT
时间: 2023-11-26 17:03:31 浏览: 79
梯度提升树(GBDT)简介1
GBDT(Gradient Boosting Decision Tree)是一种基于决策树的集成学习算法,它通过不断地迭代训练来提高模型的预测能力。在每一轮迭代中,GBDT会根据当前模型的表现,调整样本的权重,使得模型更加关注那些预测错误的样本。同时,GBDT也会引入一个新的决策树来纠正当前模型的错误,从而不断地提高模型的预测能力。
GBDT的核心思想是将多个弱分类器组合成一个强分类器,其中每个弱分类器只能对部分样本进行正确分类。在每一轮迭代中,GBDT会根据当前模型的表现,调整样本的权重,使得模型更加关注那些预测错误的样本。同时,GBDT也会引入一个新的决策树来纠正当前模型的错误,从而不断地提高模型的预测能力。
GBDT的优点在于它能够处理各种类型的数据,包括连续型、离散型和文本型数据。此外,GBDT还能够自动处理缺失值和异常值,从而提高模型的鲁棒性。GBDT在许多领域都有广泛的应用,包括金融、医疗、电商等。
阅读全文