pytorch手提包图像分割
时间: 2023-12-10 07:36:18 浏览: 92
基于 Pytorch 的遥感图像分割模型在语义分割任务中的性能 该模型采用了Unet++ 架构,以提高遥感图像分割的精度和效果
5星 · 资源好评率100%
针对手提包图像分割任务,可以使用FCN(Fully Convolutional Networks)模型进行训练和预测。下面是一个简单的pytorch实现步骤:
1.准备数据集,将训练数据和标签分别放到bag_data和bag_data_mask文件夹下。
2.定义FCN模型,可以使用pytorch内置的预训练模型,如VGG16等,也可以自己定义模型。
3.定义损失函数,这里可以使用交叉熵损失函数。
4.定义优化器,这里可以使用Adam优化器。
5.进行训练,将训练数据输入模型,计算损失函数并反向传播更新模型参数。
6.进行预测,将测试数据输入模型,得到预测结果。
下面是一个简单的代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.datasets import ImageFolder
from torchvision.models import vgg16
# 定义FCN模型
class FCN(nn.Module):
def __init__(self):
super(FCN, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 64, 3, padding=100),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, 3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(2, stride=2, ceil_mode=True),
nn.Conv2d(64, 128, 3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, 3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(2, stride=2, ceil_mode=True),
nn.Conv2d(128, 256, 3, padding=1), nn.ReLU(inplace=True),
nn.Conv2d(256, 256, 3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, 3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(2, stride=2, ceil_mode=True),
nn.Conv2d(256, 512, 3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, 3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, 3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(2, stride=2, ceil_mode=True),
nn.Conv2d(512, 512, 3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, 3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, 3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(2, stride=2, ceil_mode=True),
)
self.classifier = nn.Sequential(
nn.Conv2d(512, 4096, 7),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Conv2d(4096, 4096, 1),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Conv2d(4096, 2, 1),
nn.ConvTranspose2d(2, 2, 64, stride=32, bias=False),
)
def forward(self, x):
x = self.features(x)
x = self.classifier(x)
return x
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 加载数据集
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
])
train_dataset = ImageFolder('bag_data', transform=transform)
train_loader = DataLoader(train_dataset, batch_size=4, shuffle=True)
# 训练模型
model = FCN()
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print('[%d] loss: %.3f' % (epoch + 1, running_loss / len(train_loader)))
# 进行预测
test_dataset = ImageFolder('bag_data', transform=transform)
test_loader = DataLoader(test_dataset, batch_size=4, shuffle=False)
model.eval()
with torch.no_grad():
for data in test_loader:
inputs, labels = data
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
print(predicted)
```
阅读全文