pytorch手提包图像分割

时间: 2023-12-10 11:36:18 浏览: 44
针对手提包图像分割任务,可以使用FCN(Fully Convolutional Networks)模型进行训练和预测。下面是一个简单的pytorch实现步骤: 1.准备数据集,将训练数据和标签分别放到bag_data和bag_data_mask文件夹下。 2.定义FCN模型,可以使用pytorch内置的预训练模型,如VGG16等,也可以自己定义模型。 3.定义损失函数,这里可以使用交叉熵损失函数。 4.定义优化器,这里可以使用Adam优化器。 5.进行训练,将训练数据输入模型,计算损失函数并反向传播更新模型参数。 6.进行预测,将测试数据输入模型,得到预测结果。 下面是一个简单的代码示例: ```python import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from torchvision import transforms from torchvision.datasets import ImageFolder from torchvision.models import vgg16 # 定义FCN模型 class FCN(nn.Module): def __init__(self): super(FCN, self).__init__() self.features = nn.Sequential( nn.Conv2d(3, 64, 3, padding=100), nn.ReLU(inplace=True), nn.Conv2d(64, 64, 3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(2, stride=2, ceil_mode=True), nn.Conv2d(64, 128, 3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(128, 128, 3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(2, stride=2, ceil_mode=True), nn.Conv2d(128, 256, 3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, 3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, 3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(2, stride=2, ceil_mode=True), nn.Conv2d(256, 512, 3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(2, stride=2, ceil_mode=True), nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(2, stride=2, ceil_mode=True), ) self.classifier = nn.Sequential( nn.Conv2d(512, 4096, 7), nn.ReLU(inplace=True), nn.Dropout(), nn.Conv2d(4096, 4096, 1), nn.ReLU(inplace=True), nn.Dropout(), nn.Conv2d(4096, 2, 1), nn.ConvTranspose2d(2, 2, 64, stride=32, bias=False), ) def forward(self, x): x = self.features(x) x = self.classifier(x) return x # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) # 加载数据集 transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), ]) train_dataset = ImageFolder('bag_data', transform=transform) train_loader = DataLoader(train_dataset, batch_size=4, shuffle=True) # 训练模型 model = FCN() for epoch in range(10): running_loss = 0.0 for i, data in enumerate(train_loader, 0): inputs, labels = data optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() print('[%d] loss: %.3f' % (epoch + 1, running_loss / len(train_loader))) # 进行预测 test_dataset = ImageFolder('bag_data', transform=transform) test_loader = DataLoader(test_dataset, batch_size=4, shuffle=False) model.eval() with torch.no_grad(): for data in test_loader: inputs, labels = data outputs = model(inputs) _, predicted = torch.max(outputs.data, 1) print(predicted) ```

相关推荐

最新推荐

recommend-type

Pytorch 使用CNN图像分类的实现

通过numpy、PIL构造4*4的图像数据集 构造自己的数据集类 读取数据集对数据集选取减少偏斜 cnn设计因为特征少,直接1*1卷积层 或者在4*4外围添加padding成6*6,设计2*2的卷积核得出3*3再接上全连接层 代码 ...
recommend-type

pytorch 彩色图像转灰度图像实例

今天小编就为大家分享一篇pytorch 彩色图像转灰度图像实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

Pytorch 使用opnecv读入图像由HWC转为BCHW格式方式

主要介绍了Pytorch 使用opnecv读入图像由HWC转为BCHW格式方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

使用PyTorch训练一个图像分类器实例

今天小编就为大家分享一篇使用PyTorch训练一个图像分类器实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

在Pytorch中使用Mask R-CNN进行实例分割操作

主要介绍了在Pytorch中使用Mask R-CNN进行实例分割操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。