伪近邻算法求混沌系统的嵌入维数matlab代码
时间: 2023-10-25 08:03:43 浏览: 142
使用伪近邻算法来估计混沌系统的嵌入维数需要以下步骤:
1. 导入混沌系统的数据。首先,将混沌系统的数据导入到MATLAB中。可以使用MATLAB中的load命令将数据文件加载到工作区中。
2. 创建相位空间重构矩阵。为了进行嵌入维数的估计,需要创建相位空间重构矩阵。可以使用MATLAB的embedSeq函数来实现。该函数将输入序列嵌入到一个m维的相位空间中,其中m是预估的嵌入维数。可以尝试不同的m值,并评估不同m值下的伪近邻误差。
3. 计算伪近邻误差。用于计算伪近邻误差的函数通常称为pseudoneighbor.m文件。其中,伪近邻误差是相位空间重构矩阵中的两个样本点之间的欧几里得距离的比值。对每对样本计算伪近邻误差,并将其存储在相应的矩阵中。
4. 估计嵌入维数。在计算伪近邻误差后,可以使用伪近邻算法估计混沌系统的嵌入维数。具体的估计过程包括在伪近邻误差矩阵中寻找两个近邻之间误差增长的拐点。拐点处的斜率趋于1时,即为伪近邻误差达到平台,这时的嵌入维数即为所需的值。
5. 输出结果。最后,将估计的嵌入维数输出到MATLAB命令窗口或保存到文件中,以备将来使用。
综上所述,这是一个大致的流程来实现伪近邻算法求解混沌系统的嵌入维数的MATLAB代码。具体的代码实现可能会根据混沌系统的数据和实际情况发生变化。您可以根据上述流程自己编写代码。
阅读全文