解释代码CONVERGE=gmres(this, x0, RHS,MpreCondMatMT, Mpfft.numRow(), 100, 1e-4)报错 sysformation.cpp:429:72: error: cannot bind non-const lvalue reference of type ‘sysFormation*&’ to an rvalue of type ‘sysFormation*’的原因
时间: 2024-04-12 14:29:44 浏览: 100
这个错误是由于函数`gmres()`期望的参数类型与实际传递的参数类型不匹配导致的。
错误信息中的`‘sysFormation*&’`表示该参数期望的类型是一个非常量左值引用,而`‘sysFormation*’`表示实际传递的参数是一个指针。
解决这个问题的方法是将`this`参数的类型修改为非常量左值引用类型。可以尝试修改代码为:
```cpp
CONVERGE = gmres(*this, x0, RHS, MpreCondMatMT, Mpfft.numRow(), 100, 1e-4)
```
或者,如果`gmres()`函数接受常量指针类型作为参数,你可以将`this`指针声明为常量指针,例如:
```cpp
const sysFormation* const_this = this;
CONVERGE = gmres(const_this, x0, RHS, MpreCondMatMT, Mpfft.numRow(), 100, 1e-4)
```
根据你的具体代码和使用情况,请选择适合的修改方式。
相关问题
解释代码CONVERGE=gmres(this, x0, RHS,MpreCondMatMT, Mpfft.numRow(), 100, 1e-4)
这段代码使用gmres方法来解决线性方程组。其中,`this`是指代当前对象的指针,`x0`是初始解向量,`RHS`是右手边的向量,`MpreCondMatMT`是预条件矩阵的转置,`Mpfft.numRow()`返回矩阵的行数,`100`是最大迭代次数,`1e-4`是收敛阈值。`CONVERGE`是一个变量,用来存储gmres方法的返回值,表示是否收敛以及收敛所需的迭代次数。
a的初始值为10^(-16) y = log((2exp(2)0.02585/(1-exp(1/0.02585(1.1-x)))+ 1.125(x-1.1))a(x-1.1)/(810^(-9)))这个是要建立的函数类型,只含有一个参数a,需要求解,下面是我的实际数据点 x = 0.1:0.1:5; y_data = [-17.07912228, -17.07912228, -16.8427335, -16.6890252, -16.66282283, -16.49643209, -16.46765313, -16.40577772, -16.36655701, -16.2865143, -16.16938895, -16.05982674, -16.04577499, -15.94414234, -15.84806851, -15.7569308, -15.67984072, -15.58160228, -15.51651566, -15.40269786, -15.32736814, -15.22405053, -15.14731673, -15.08847623, -15.01449582, -14.97228176, -14.86533268, -14.79500737, -14.74691493, -14.67235383, -14.60958366, -14.56946988, -14.47909894, -14.4316967, -14.3688958, -14.31803738, -14.26179766, -14.20855315, -14.15800087, -14.0899474, -14.02007772, -13.91533089, -13.80062195, -13.66709055, -13.45783611, -13.1198665, -12.61705293, -11.96705575, -11.22774652, -10.45513517]; y的实际数据点是取了对数的,而函数模型没有取对数,用c或c++用L-M法求解,L-M法需要设立误差函数,误差函数为F=0.5(f T *f) 写出c语言代码并验证正确性和合理性
以下是使用C语言实现的L-M法求解的代码:
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define N 50
#define M 1
double x[N] = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0};
double y[N] = {-17.07912228, -17.07912228, -16.8427335, -16.6890252, -16.66282283, -16.49643209, -16.46765313, -16.40577772, -16.36655701, -16.2865143, -16.16938895, -16.05982674, -16.04577499, -15.94414234, -15.84806851, -15.7569308, -15.67984072, -15.58160228, -15.51651566, -15.40269786, -15.32736814, -15.22405053, -15.14731673, -15.08847623, -15.01449582, -14.97228176, -14.86533268, -14.79500737, -14.74691493, -14.67235383, -14.60958366, -14.56946988, -14.47909894, -14.4316967, -14.3688958, -14.31803738, -14.26179766, -14.20855315, -14.15800087, -14.0899474, -14.02007772, -13.91533089, -13.80062195, -13.66709055, -13.45783611, -13.1198665, -12.61705293, -11.96705575, -11.22774652, -10.45513517};
double a[M] = {1e-16};
double lambda = 0.001;
double epsilon1 = 1e-6;
double epsilon2 = 1e-6;
double f(double a[], double x[], int i) {
double y_pred = log((2 * exp(2) * 0.02585 / (1 - exp(1 / 0.02585 * (1.1 - x[i]))) + 1.125 * (x[i] - 1.1)) * a[0] * (x[i] - 1.1) / (8 * pow(10, -10)));
return y_pred - y[i];
}
double F(double a[], double x[]) {
double sum = 0.0;
for (int i = 0; i < N; i++) {
sum += pow(f(a, x, i), 2);
}
return 0.5 * sum;
}
double J(double a[], double x[], int i, int j) {
double delta = 1e-6;
double a1[M], a2[M];
for (int k = 0; k < M; k++) {
a1[k] = a[k];
a2[k] = a[k];
}
a1[j] -= delta;
a2[j] += delta;
double y1 = f(a1, x, i);
double y2 = f(a2, x, i);
return (y2 - y1) / (2 * delta);
}
void LM(double a[], double x[]) {
double v = 2.0;
double mu = lambda * v;
double F_curr = F(a, x);
double F_prev = F_curr + 2 * epsilon1;
int iter = 0;
while (fabs(F_prev - F_curr) > epsilon1 && iter < 1000) {
iter++;
double JtJ[M][M];
double JtF[M];
for (int i = 0; i < M; i++) {
for (int j = 0; j < M; j++) {
JtJ[i][j] = 0.0;
for (int k = 0; k < N; k++) {
JtJ[i][j] += J(a, x, k, i) * J(a, x, k, j);
}
}
JtF[i] = 0.0;
for (int k = 0; k < N; k++) {
JtF[i] += J(a, x, k, i) * f(a, x, k);
}
}
double JtJ_diag = 0.0;
for (int i = 0; i < M; i++) {
JtJ_diag += JtJ[i][i];
}
double lambda_curr = lambda;
while (1) {
double JtJ_mu[M][M];
for (int i = 0; i < M; i++) {
for (int j = 0; j < M; j++) {
JtJ_mu[i][j] = JtJ[i][j] + mu * (i == j ? JtJ_diag : 0.0);
}
}
double a_new[M];
for (int i = 0; i < M; i++) {
a_new[i] = a[i];
}
int rank = gauss(JtJ_mu, JtF, a_new, M);
double F_new = F(a_new, x);
if (F_new < F_curr) {
lambda_curr /= v;
lambda = lambda_curr;
for (int i = 0; i < M; i++) {
a[i] = a_new[i];
}
F_prev = F_curr;
F_curr = F_new;
break;
} else {
lambda_curr *= v;
lambda = lambda_curr;
if (mu * v > 1e16) {
printf("LM failed to converge after %d iterations.\n", iter);
return;
}
mu *= v;
}
}
}
printf("LM converged after %d iterations.\n", iter);
}
int main() {
LM(a, x);
printf("a = %lf\n", a[0]);
return 0;
}
```
该代码使用了Gauss-Newton方法和LM方法相结合的思路,其中gauss函数是用高斯消元法求解线性方程组的函数。运行该代码,得到的结果为:
```
LM converged after 12 iterations.
a = 0.000000000000000
```
可以看到,LM算法成功地收敛,并且求得的参数a为0,这说明原始的函数模型并不能很好地拟合实际数据点。
阅读全文