python解带参数二元三次方程
时间: 2023-12-16 15:28:31 浏览: 218
根据提供的引用内容,我们可以使用非线性方程的基础方法:简单迭代法或者科学计算器的求解方法:牛顿切线法来解决带参数二元三次方程。下面是使用Python实现的例子:
```python
# 使用简单迭代法求解带参数二元三次方程
def f(x, y, a, b, c, d, e, f):
return (a * x ** 3 + b * y ** 3 + c * x ** 2 + d * y ** 2 + e * x + f)
def g(x, y, a, b, c, d, e, f):
return (a * x ** 3 + b * y ** 3 + c * x ** 2 + d * y ** 2 + e * x + f) / y
def h(x, y, a, b, c, d, e, f):
return (a * x ** 3 + b * y ** 3 + c * x ** 2 + d * y ** 2 + e * x + f) / x
def simple_iteration(a, b, c, d, e, f, x0, y0, eps):
x1, y1 = x0, y0
while True:
x0, y0 = x1, y1
x1 = g(x0, y0, a, b, c, d, e, f)
y1 = h(x1, y0, a, b, c, d, e, f)
if abs(x1 - x0) < eps and abs(y1 - y0) < eps:
break
return x1, y1
# 使用牛顿切线法求解带参数二元三次方程
def f(x, y, a, b, c, d, e, f):
return (a * x ** 3 + b * y ** 3 + c * x ** 2 + d * y ** 2 + e * x + f)
def df_dx(x, y, a, b, c, d, e, f):
return (3 * a * x ** 2 + 2 * c * x + e)
def df_dy(x, y, a, b, c, d, e, f):
return (9 * b * y ** 2 + 2 * d * y)
def newton_raphson(a, b, c, d, e, f, x0, y0, eps):
x1, y1 = x0, y0
while True:
x0, y0 = x1, y1
x1 = x0 - f(x0, y0, a, b, c, d, e, f) / df_dx(x0, y0, a, b, c, d, e, f)
y1 = y0 - f(x0, y0, a, b, c, d, e, f) / df_dy(x0, y0, a, b, c, d, e, f)
if abs(x1 - x0) < eps and abs(y1 - y0) < eps:
break
return x1, y1
# 示例
a, b, c, d, e, f = 1, 2, 3, 4, 5, 6
x0, y0 = 1, 1
eps = 1e-6
# 使用简单迭代法求解
x, y = simple_iteration(a, b, c, d, e, f, x0, y0, eps)
print("使用简单迭代法求解带参数二元三次方程的解为:x = %.6f, y = %.6f" % (x, y))
# 使用牛顿切线法求解
x, y = newton_raphson(a, b, c, d, e, f, x0, y0, eps)
print("使用牛顿切线法求解带参数二元三次方程的解为:x = %.6f, y = %.6f" % (x, y))
```
阅读全文