rk3399虚拟摄像头 v4l2lookback

时间: 2023-11-15 08:59:21 浏览: 40
rk3399虚拟摄像头 v4l2lookback是一种将rk3399的视频流转换为虚拟摄像头的工具。具体步骤如下: 1. 安装v4l2loopback,可以通过git clone https://gitee.com/ldl17/v4l2loopback make命令进行安装。 2. 创建虚拟设备video10和video11,可以通过sudo modprobe v4l2loopback video_nr=10,11命令进行创建。 3. 使用ffmpeg将video0视频流copy到新建的虚拟设备上,可以通过ffmpeg -f video4linux2 -s 640x480 -r 30 -i /dev/video0 -vcodec copy -f v4l2 /dev/video10 -vcodec copy -f v4l2 /dev/video11命令进行转换。
相关问题

路由器lookback接口

路由器的lookback接口,是指一种虚拟接口。它不是实际物理接口,而是在路由器内部创建的一个逻辑接口。 lookback接口具有以下特点: 1. 路由器的lookback接口具有唯一的IP地址。它的IP地址不依赖于任何物理接口,因此即使物理接口发生故障或被关闭,lookback接口的IP地址仍然有效。这使得lookback接口成为配置路由器内部过程和协议之间通信的理想选择。 2. lookback接口是一个逻辑接口,没有硬件限制。因此,它没有传输速率和带宽的限制。这使得lookback接口能够以很高的速率进行数据传输,非常适合用于内部通信和路由器配置。 3. lookback接口的主要用途是在路由器之间建立稳定的通信连接或为路由器提供唯一的标识。例如,在配置路由器OSPF协议时,可以使用lookback接口作为OSPF邻居之间的通信路径。此外,lookback接口还可以用于配置路由器的管理IP地址,并用于远程管理和监控。 4. lookback接口也可以用于测试和故障排除。通过配置和启用lookback接口,可以模拟某个物理接口的功能,以检查网络设备之间的连通性以及验证路由器配置是否正确。 总之,路由器的lookback接口是一种虚拟接口,具有唯一性和高度可靠性的特点。它在路由器内部通信、连接邻居路由器、提供唯一标识以及测试和故障排除等方面发挥着重要的作用。

batchsize和lookback

batch size和lookback是两个不同的概念。Batch size是指每次模型训练时使用的样本数量,而lookback通常用于时间序列分析中,用于指定模型需要考虑多少个时间步之前的数据。 具体来说,lookback指的是在进行时间序列预测时,模型需要考虑多少个时间步之前的数据。例如,如果lookback为1,则模型只考虑前一个时间步的数据来进行预测。如果lookback为3,则模型需要考虑前3个时间步的数据来进行预测。lookback的设置通常需要结合具体的时间序列数据进行调整,一般情况下会根据经验或者试错的方式来进行设置。 与之相对应的,batch size指的是每次模型训练时使用的样本数量。一般来说,batch size越大,模型的训练速度越快,但是会占用更多的内存和显存。同时,batch size的设置也会影响到模型的收敛速度和泛化性能。具体的batch size的设置需要结合实际情况进行调整,一般建议将batch size设置为2的幂次方,例如16、32、64等。

相关推荐

"lookback"通常是指一种时间序列预测模型中的参数,它表示模型在进行预测时需要考虑的时间窗口的大小。如果您的问题是如何在Python中实现一个具有自适应调整lookback参数能力的时间序列预测模型,下面是一个简单的示例代码: python import numpy as np from keras.models import Sequential from keras.layers import Dense, LSTM # 定义一个LSTM模型 lookback = 10 # 初始的lookback值 model = Sequential() model.add(LSTM(32, input_shape=(lookback, 1))) model.add(Dense(1)) model.compile(optimizer='adam', loss='mse') # 加载时间序列数据 data = load_data() # 自定义函数,用于加载时间序列数据 # 训练模型,并逐步调整lookback值 for i in range(10): X, y = prepare_data(data, lookback) # 自定义函数,用于将原始数据转换为模型输入数据 model.fit(X, y, epochs=10, batch_size=32) pred = model.predict(X) error = np.abs(pred - y) if error.mean() < 0.1: break # 如果误差已经足够小,则停止训练 lookback += 1 # 增加lookback值 # 使用训练好的模型进行预测 X_test, y_test = prepare_data(test_data, lookback) # 自定义函数,用于将测试数据转换为模型输入数据 pred_test = model.predict(X_test) 上述代码中,我们首先定义了一个LSTM模型,并将lookback值设置为10。然后,我们加载时间序列数据,并使用自定义函数prepare_data()将其转换为模型输入数据。接下来,我们使用循环逐步调整lookback值,并训练模型。在每一轮训练结束后,我们计算模型在训练数据上的预测误差,并判断是否已经达到足够小的误差。如果是,则停止训练;否则,继续增加lookback值并进行下一轮训练。最终,我们使用训练好的模型对测试数据进行预测。 需要注意的是,这只是一个简单的示例代码,实际情况可能更为复杂。例如,我们可能需要使用交叉验证等方法来选择最优的lookback值,而不是简单地逐步增加。另外,我们也可以使用其他类型的模型,例如GRU、CNN等。
假设你有一个包含历史销售数据的数据集,每个数据点包含销售额和对应的时间戳。为了使用LSTM模型进行预测,你需要首先将数据转化为适合LSTM输入的形式。具体步骤如下: 1. 将数据按时间戳排序。 2. 定义lookback=4,即使用前4个时间步的销售额来预测下一个时间步的销售额。 3. 创建一个长度为len(data)-lookback的train数组,用于存储训练数据。train数组的每个元素是一个形状为(lookback,1)的数组,表示前lookback个时间步的销售额。 4. 遍历数据集,对于每个时间步t,将前lookback个时间步的销售额作为train数组的一个元素。具体来说,train[t-lookback] = data[t-lookback:t, 0],其中data[t-lookback:t, 0]表示前lookback个时间步的销售额。 5. 将train数组和对应的目标值(即下一个时间步的销售额)用于训练LSTM模型。 6. 使用训练好的LSTM模型对未来的销售额进行预测。 下面是一个示例代码: python import numpy as np from keras.models import Sequential from keras.layers import Dense, LSTM # 定义lookback和数据集 lookback = 4 data = np.array([[10, 1], [20, 2], [30, 3], [40, 4], [50, 5], [60, 6], [70, 7], [80, 8], [90, 9], [100, 10]]) # 创建train数组 train = np.zeros((len(data)-lookback, lookback, 1)) for i in range(lookback, len(data)): train[i-lookback] = data[i-lookback:i, 0].reshape(-1, 1) # 定义LSTM模型 model = Sequential() model.add(LSTM(32, input_shape=(lookback, 1))) model.add(Dense(1)) model.compile(loss='mse', optimizer='adam') # 训练模型 model.fit(train, data[lookback:, 0], epochs=100, batch_size=1, verbose=2) # 使用模型进行预测 x = np.array([[80], [90], [100], [110]]) x = x.reshape((1, lookback, 1)) y_pred = model.predict(x) print(y_pred) 在上面的示例代码中,我们先创建了一个包含10个数据点的数据集,每个数据点的第一列是销售额,第二列是时间戳。然后我们定义了lookback=4,并使用前4个时间步的销售额来预测下一个时间步的销售额。接着我们创建了train数组,用于存储训练数据。对于每个时间步t,我们将前lookback个时间步的销售额作为train数组的一个元素。最后,我们定义了一个LSTM模型,并使用train数组和对应的目标值(即下一个时间步的销售额)进行训练。最后,我们使用训练好的LSTM模型对未来的销售额进行预测。
对于这个任务,我们需要完成以下几个步骤: 1. 编写算法脚本 suanfa.py,用于数据处理、模型训练和预测。 2. 编写 Flask 应用 app.py,用于处理用户请求并返回结果。 3. 编写 HTML 页面 predict.html,用于获取用户输入并向后端发送请求。 下面是详细的代码: suanfa.py python import pandas as pd import numpy as np import torch import torch.nn as nn from sklearn.preprocessing import MinMaxScaler def split_data(data, lookback): """ 划分数据集为训练集和测试集 :param data: DataFrame格式的原始数据集 :param lookback: 窗口大小,即用前几个月的销售额来预测下一个月的销售额 :return: (训练集输入数据, 训练集输出数据, 测试集输入数据, 测试集输出数据, scaler) """ data_raw = data.to_numpy() scaler = MinMaxScaler(feature_range=(-1, 1)) data_scaled = scaler.fit_transform(data_raw) result = [] for index in range(len(data_scaled) - lookback): result.append(data_scaled[index: index + lookback]) result = np.array(result) row = round(0.8 * result.shape[0]) train = result[:int(row), :] np.random.shuffle(train) x_train = train[:, :-1] y_train = train[:, -1][:, -1] x_test = result[int(row):, :-1] y_test = result[int(row):, -1][:, -1] x_train = torch.from_numpy(x_train).type(torch.Tensor) x_test = torch.from_numpy(x_test).type(torch.Tensor) y_train = torch.from_numpy(y_train).type(torch.Tensor) y_test = torch.from_numpy(y_test).type(torch.Tensor) return x_train, y_train, x_test, y_test, scaler class LSTM(nn.Module): def __init__(self, input_size=1, hidden_layer_size=100, output_size=1): super().__init__() self.hidden_layer_size = hidden_layer_size self.lstm = nn.LSTM(input_size, hidden_layer_size) self.linear = nn.Linear(hidden_layer_size, output_size) self.hidden_cell = (torch.zeros(1, 1, self.hidden_layer_size), torch.zeros(1, 1, self.hidden_layer_size)) def forward(self, input_seq): lstm_out, self.hidden_cell = self.lstm(input_seq.view(len(input_seq), 1, -1), self.hidden_cell) predictions = self.linear(lstm_out.view(len(input_seq), -1)) return predictions[-1] def train_model(data, lookback, model_path): """ 训练模型并保存 :param data: DataFrame格式的原始数据集 :param lookback: 窗口大小,即用前几个月的销售额来预测下一个月的销售额 :param model_path: 保存模型的路径 """ x_train, y_train, x_test, y_test, scaler = split_data(data, lookback) model = LSTM() loss_function = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) epochs = 150 for i in range(epochs): for j in range(x_train.size()[0]): optimizer.zero_grad() model.hidden_cell = (torch.zeros(1, 1, model.hidden_layer_size), torch.zeros(1, 1, model.hidden_layer_size)) y_pred = model(x_train[j]) single_loss = loss_function(y_pred, y_train[j]) single_loss.backward() optimizer.step() if i % 25 == 1: print(f'epoch: {i:3} loss: {single_loss.item():10.8f}') torch.save(model.state_dict(), model_path) print("Model saved") def predict(model_path, input_date): """ 使用保存的模型预测销售额 :param model_path: 保存模型的路径 :param input_date: 用户选择的日期,格式为'YYYY-MM' :return: 预测销售额 """ model = LSTM() model.load_state_dict(torch.load(model_path)) model.eval() data = pd.read_csv('shuju.csv') data = data.set_index('Year-Month') # 将输入的日期转换为对应的行数 row_num = data.index.get_loc(input_date) x = data.iloc[row_num - 4:row_num + 1]['TotalPrice'].values x = scaler.transform(x.reshape(-1, 1)) x = torch.from_numpy(x).type(torch.Tensor) with torch.no_grad(): model.hidden = (torch.zeros(1, 1, model.hidden_layer_size), torch.zeros(1, 1, model.hidden_layer_size)) pred = model(x) pred = scaler.inverse_transform(pred.reshape(-1, 1)) return round(pred[0][0]) app.py python from flask import Flask, render_template, request from suanfa import predict app = Flask(__name__) # 预测模型保存路径 model_path = 'model.pth' @app.route('/') def index(): return render_template('predict.html') @app.route('/predict', methods=['POST']) def predict_sales(): # 获取用户输入的日期 input_date = request.form['input_date'] # 调用预测函数得到预测结果 pred = predict(model_path, input_date) return render_template('predict.html', prediction=pred) predict.html html <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title>销售额预测系统</title> <script src="https://cdn.bootcss.com/jquery/3.2.1/jquery.min.js"></script> <script src="https://cdn.bootcss.com/bootstrap/3.3.7/js/bootstrap.min.js"></script> <script src="https://cdn.bootcss.com/layer/2.3/layer.js"></script> </head> <body> 销售额预测系统 <form class="form-inline" action="/predict" method="POST"> <label for="input_date">日期:</label> <input type="month" class="form-control" id="input_date" name="input_date" required> <button type="submit" class="btn btn-primary">预测</button> </form> {% if prediction %} 预测结果:{{ prediction }} 元 {% endif %} </body> </html> 在运行应用之前,需要在命令行中安装以下依赖: bash pip install Flask pandas numpy torch sklearn 接下来,在命令行中输入以下命令启动应用: bash export FLASK_APP=app.py flask run 然后在浏览器中访问 http://127.0.0.1:5000/ 即可使用销售额预测系统。
以下是一个可能的实现过程,仅供参考: python import pandas as pd import numpy as np import torch import torch.nn as nn from sklearn.preprocessing import MinMaxScaler # 定义模型 class LSTM(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(LSTM, self).__init__() self.hidden_size = hidden_size self.lstm = nn.LSTM(input_size, hidden_size) self.fc = nn.Linear(hidden_size, output_size) def forward(self, input): h0 = torch.zeros(1, input.size(1), self.hidden_size).to(input.device) c0 = torch.zeros(1, input.size(1), self.hidden_size).to(input.device) output, _ = self.lstm(input, (h0, c0)) output = self.fc(output[-1]) return output # 定义数据划分函数 def split_data(data, lookback): data_raw = data.to_numpy() scaler = MinMaxScaler() data_scaled = scaler.fit_transform(data_raw) x = [] y = [] for i in range(len(data_scaled) - lookback): x.append(data_scaled[i:i + lookback]) y.append(data_scaled[i + lookback]) x = np.array(x) y = np.array(y) train_size = int(len(x) * 0.8) x_train = torch.from_numpy(x[:train_size, :, :]).type(torch.Tensor) y_train = torch.from_numpy(y[:train_size, :]).type(torch.Tensor) x_test = torch.from_numpy(x[train_size:, :, :]).type(torch.Tensor) y_test = torch.from_numpy(y[train_size:, :]).type(torch.Tensor) return x_train, y_train, x_test, y_test, scaler # 读取数据 data = pd.read_csv("resultym.csv") lookback = 4 total_price_col_idx = 1 output_size = 1 hidden_size = 16 device = torch.device("cpu") model = LSTM(lookback, hidden_size, output_size).to(device) criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.01) num_epochs = 1000 # 预测并插入数据 for i in range(26, 50): # 划分数据集 x_train, y_train, x_test, y_test, scaler = split_data(data.iloc[:i, 1:], lookback) # 训练模型 for epoch in range(num_epochs): optimizer.zero_grad() y_train_pred = model(x_train.to(device)) loss = criterion(y_train_pred, y_train.to(device)) loss.backward() optimizer.step() # 预测测试集 x_test = x_test[-1:, :, :] y_test_pred = model(x_test.to(device)) y_test_pred = scaler.inverse_transform(y_test_pred.detach().numpy())[0][0] data.loc[i, "TotalPrice"] = y_test_pred data.loc[i+1] = [f"2023/{i+4:02d}", 2222222.5] # 输出结果 print(data) 其中,模型训练和预测的过程与前面的实现类似,主要的区别在于每次预测完之后需要将预测结果插入数据表中,并且在插入时需要按照一定规则生成新的日期值。另外,由于每次预测时只需要使用前面的数据,因此可以每次只读取前面的部分数据进行训练和预测,避免了重复计算。
suanfa.py: python import pandas as pd import numpy as np import torch from torch import nn from torch.utils.data import Dataset, DataLoader from sklearn.preprocessing import MinMaxScaler # Read csv file data = pd.read_csv('shuju.csv') # Normalize the data scaler = MinMaxScaler() data['TotalPrice'] = scaler.fit_transform(data[['TotalPrice']]) # Split data into train and test sets def split_data(data, lookback): data_raw = data.to_numpy() data = [] for index in range(len(data_raw) - lookback): data.append(data_raw[index: index + lookback]) data = np.array(data) train_size = int(len(data) * 0.8) train_data = data[:train_size, :] test_data = data[train_size:, :] return train_data, test_data train_data, test_data = split_data(data, lookback=4) # Convert to PyTorch tensors train_data = torch.from_numpy(train_data).type(torch.Tensor) test_data = torch.from_numpy(test_data).type(torch.Tensor) # Define hyperparameters input_size = 1 hidden_size = 2 num_layers = 1 output_size = 1 learning_rate = 0.01 num_epochs = 200 # Define LSTM model class LSTM(nn.Module): def __init__(self, input_size, hidden_size, num_layers, output_size): super(LSTM, self).__init__() self.hidden_size = hidden_size self.num_layers = num_layers self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, output_size) def forward(self, x): h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).requires_grad_() c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).requires_grad_() out, (hn, cn) = self.lstm(x, (h0.detach(), c0.detach())) out = self.fc(out[:, -1, :]) return out model = LSTM(input_size, hidden_size, num_layers, output_size) # Define loss function and optimizer criterion = torch.nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) # Train the model for epoch in range(num_epochs): outputs = model(train_data) optimizer.zero_grad() loss = criterion(outputs, train_data[:, -1, :]) loss.backward() optimizer.step() if epoch % 10 == 0: print("Epoch: %d, loss: %1.5f" % (epoch, loss.item())) # Save the model torch.save(model, 'model.pt') predict.html: html <!DOCTYPE html> <html> <head> <title>Predict sales</title> <script type="text/javascript" src="{{ url_for('static', filename='layui/layui.js') }}"></script> </head> <body> Predict sales <form class="layui-form" action=""> <label class="layui-form-label">Date</label> <input type="text" name="date" id="date" class="layui-input" placeholder="yyyy/mm"> <button type="button" class="layui-btn layui-btn-normal" onclick="predict()">Predict</button> </form> Predicted sales: <script type="text/javascript"> function predict() { var date = document.getElementById("date").value; if (date === "") { layer.msg("Please enter a date"); return; } var year = parseInt(date.split("/")[0]); var month = parseInt(date.split("/")[1]); if (isNaN(year) || isNaN(month)) { layer.msg("Invalid date format"); return; } if (month < 1 || month > 12) { layer.msg("Invalid month"); return; } var data = [[ [{{ test_data[-1, :][0] }}], [{{ test_data[-2, :][0] }}], [{{ test_data[-3, :][0] }}], [{{ test_data[-4, :][0] }}] ]]; var model = "{{ url_for('static', filename='model.pt') }}"; $.ajax({ type: "POST", url: "{{ url_for('predict') }}", data: JSON.stringify({ "year": year, "month": month, "data": data, "model": model }), contentType: "application/json; charset=utf-8", dataType: "json", success: function(result) { document.getElementById("result").innerHTML = result.predicted_sales.toFixed(2); }, error: function(xhr, textStatus, errorThrown) { layer.msg("Error: " + xhr.responseText); } }); } </script> </body> </html> app.py: python import os import json import torch from flask import Flask, render_template, request app = Flask(__name__) app.config['SECRET_KEY'] = os.urandom(24) class SalesDataset(Dataset): def __init__(self, data): self.data = data def __len__(self): return len(self.data) def __getitem__(self, index): x = self.data[index, :-1] y = self.data[index, -1] return x, y @app.route('/') def index(): return render_template('predict.html') @app.route('/predict', methods=['POST']) def predict(): year = request.json['year'] month = request.json['month'] data = torch.from_numpy(np.array(request.json['data'])).type(torch.Tensor) model = torch.load(request.json['model']) predicted_sales = model(data).item() return json.dumps({'predicted_sales': predicted_sales}) if __name__ == '__main__': app.run(debug=True)
首先,我们需要导入相关的库和模块: python import pandas as pd import numpy as np from sklearn.preprocessing import MinMaxScaler import torch import torch.nn as nn import torch.optim as optim from torch.autograd import Variable 然后,我们需要读取resultym.csv文件,获取前27行数据,以及读取shuju.csv文件,获取24条数据: python # 读取resultym.csv文件 data = pd.read_csv('resultym.csv', header=0, usecols=[0, 1]) data = data.iloc[:27] # 读取shuju.csv文件 data_raw = pd.read_csv('shuju.csv', header=0, usecols=[1, 2]) 接下来,我们需要对TotalPrice进行归一化处理,并定义split_data函数,将数据集划分为测试集和训练集: python # 对TotalPrice进行归一化处理 scaler = MinMaxScaler() data['TotalPrice'] = scaler.fit_transform(data['TotalPrice'].values.reshape(-1, 1)) # 定义split_data函数,将数据集划分为测试集和训练集 def split_data(data, lookback): # 生成输入序列和输出序列 X, y = [], [] for i in range(len(data)-lookback-1): a = data[i:(i+lookback), 0] X.append(a) y.append(data[i + lookback, 0]) return np.array(X), np.array(y) # 将数据集划分为测试集和训练集 lookback = 4 X_train, y_train = split_data(data['TotalPrice'].values.reshape(-1, 1), lookback) X_test, y_test = split_data(data_raw['TotalPrice'].values.reshape(-1, 1), lookback) # 将划分完成后的测试集和训练集转换为PyTorch张量 X_train = torch.from_numpy(X_train).type(torch.Tensor) X_test = torch.from_numpy(X_test).type(torch.Tensor) y_train = torch.from_numpy(y_train).type(torch.Tensor) y_test = torch.from_numpy(y_test).type(torch.Tensor) # 对张量进行reshape操作 X_train = Variable(X_train.view(-1, 1, lookback)) X_test = Variable(X_test.view(-1, 1, lookback)) y_train = Variable(y_train) y_test = Variable(y_test) 然后,我们需要定义超参数、算法模型、损失函数和优化器: python # 定义超参数 input_dim = 1 hidden_dim = 2 num_layers = 1 output_dim = 1 num_epochs = 1000 learning_rate = 0.01 # 定义算法模型 class LSTM(nn.Module): def __init__(self, input_dim, hidden_dim, num_layers, output_dim): super(LSTM, self).__init__() self.hidden_dim = hidden_dim self.num_layers = num_layers self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers, batch_first=True) self.fc = nn.Linear(hidden_dim, output_dim) def forward(self, x): h0 = Variable(torch.zeros(self.num_layers, x.size(0), self.hidden_dim)) c0 = Variable(torch.zeros(self.num_layers, x.size(0), self.hidden_dim)) out, (hn, cn) = self.lstm(x, (h0.detach(), c0.detach())) out = self.fc(out[:, -1, :]) return out model = LSTM(input_dim=input_dim, hidden_dim=hidden_dim, output_dim=output_dim, num_layers=num_layers) # 定义损失函数和优化器 criterion = nn.MSELoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) 接下来,我们需要训练模型,并循环调用模型进行预测,将预测出的值插入到resultym.csv表格的最后一行: python # 训练模型 for epoch in range(num_epochs): outputs = model(X_train) optimizer.zero_grad() loss = criterion(outputs, y_train) loss.backward() optimizer.step() if epoch % 100 == 0: print("Epoch: %d, loss: %1.5f" % (epoch, loss.item())) # 循环调用模型进行预测 for i in range(24): x = X_test[i].unsqueeze(0) y_test_pred = model(x).item() y_test = torch.cat([y_test, torch.Tensor([y_test_pred])]) data = data.append({'Date': '2023/'+str(int(data_raw.iloc[i, 1])+1).zfill(2), 'TotalPrice': 2222222.5}, ignore_index=True) # 将预测出的值插入到resultym.csv表格的最后一行 for i in range(26, 51): x = data['TotalPrice'][i-lookback:i].values.reshape(-1, 1) x = scaler.transform(x) x = torch.from_numpy(x).type(torch.Tensor) x = Variable(x.view(-1, 1, lookback)) y_pred = model(x).item() y_pred = scaler.inverse_transform(np.array([[y_pred]])) data = data.append({'Date': '2023/'+str(int(data_raw.iloc[i-lookback, 1])+1).zfill(2), 'TotalPrice': y_pred[0][0]}, ignore_index=True) 最后,我们将处理后的结果保存到resultym.csv文件中: python # 将处理后的结果保存到resultym.csv文件中 data.to_csv('resultym.csv', index=False)
这这段这段代码这段代码主这段代码主要这段代码主要是这段代码主要是定义这段代码主要是定义了这段代码主要是定义了一个这段代码主要是定义了一个 Batch这段代码主要是定义了一个 BatchDataset这段代码主要是定义了一个 BatchDataset 类这段代码主要是定义了一个 BatchDataset 类,这段代码主要是定义了一个 BatchDataset 类,用这段代码主要是定义了一个 BatchDataset 类,用于这段代码主要是定义了一个 BatchDataset 类,用于处理这段代码主要是定义了一个 BatchDataset 类,用于处理数据这段代码主要是定义了一个 BatchDataset 类,用于处理数据集这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy 的这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy 的方法这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy 的方法进行这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy 的方法进行分这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy 的方法进行分离这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy 的方法进行分离和这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy 的方法进行分离和重这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy 的方法进行分离和重组这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy 的方法进行分离和重组,这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy 的方法进行分离和重组,得这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy 的方法进行分离和重组,得到这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy 的方法进行分离和重组,得到一个这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy 的方法进行分离和重组,得到一个满这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy 的方法进行分离和重组,得到一个满足这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy 的方法进行分离和重组,得到一个满足要这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy 的方法进行分离和重组,得到一个满足要求这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy 的方法进行分离和重组,得到一个满足要求的这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy 的方法进行分离和重组,得到一个满足要求的数据这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy 的方法进行分离和重组,得到一个满足要求的数据集这段代码主要是定义了一个 BatchDataset 类,用于处理数据集。类中包含多个方法,比如初始化函数、长度函数、获取数据函数等等。其中最关键的是 split_data 函数,用于将输入数据进行预处理,使其适用于神经网络的训练。这个函数会将原始数据转化成 numpy 格式,调用 numpy 的方法进行分离和重组,得到一个满足要求的数据集。
以下是大致的代码实现思路,需要根据具体数据集和模型进行调整: python import pandas as pd import numpy as np import torch import torch.nn as nn from sklearn.preprocessing import MinMaxScaler # 读取数据集 data = pd.read_csv("resultym.csv") data['Date'] = pd.to_datetime(data['Date'], format='%Y/%m') data.set_index('Date', inplace=True) # 数据归一化 scaler = MinMaxScaler(feature_range=(0, 1)) data_scaled = scaler.fit_transform(data) # 划分训练集和测试集 train_size = int(len(data_scaled) * 0.8) test_size = len(data_scaled) - train_size train_data = data_scaled[0:train_size, :] test_data = data_scaled[train_size:len(data_scaled), :] # 将数据转为 PyTorch 张量 def create_dataset(dataset, look_back=4): X, y = [], [] for i in range(len(dataset)-look_back-1): a = dataset[i:(i+look_back), :] X.append(a) y.append(dataset[i + look_back, 1]) return torch.tensor(X), torch.tensor(y) look_back = 4 X_train, y_train = create_dataset(train_data, look_back) X_test, y_test = create_dataset(test_data, look_back) # 定义超参数和模型 input_dim = X_train.shape[-1] hidden_dim = 32 num_layers = 1 output_dim = 1 num_epochs = 100 learning_rate = 0.01 class LSTM(nn.Module): def __init__(self, input_dim, hidden_dim, num_layers, output_dim): super(LSTM, self).__init__() self.hidden_dim = hidden_dim self.num_layers = num_layers self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers, batch_first=True) self.fc = nn.Linear(hidden_dim, output_dim) def forward(self, x): h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_dim).requires_grad_() c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_dim).requires_grad_() out, (hn, cn) = self.lstm(x, (h0.detach(), c0.detach())) out = self.fc(out[:, -1, :]) return out model = LSTM(input_dim, hidden_dim, num_layers, output_dim) # 定义优化器和损失函数 criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) # 训练模型 for epoch in range(num_epochs): outputs = model(X_train.float()) optimizer.zero_grad() loss = criterion(outputs.squeeze(), y_train.float()) loss.backward() optimizer.step() if epoch % 10 == 0: print("Epoch: %d, loss: %1.5f" % (epoch, loss.item())) # 预测测试集数据 model.eval() X_test = X_test.float() y_test_pred = model(X_test).squeeze().detach().numpy() y_test_pred = scaler.inverse_transform(np.concatenate((np.zeros((look_back, 1)), y_test_pred.reshape(-1, 1)))) # 将预测结果插入数据表 for i in range(len(y_test_pred)): date = pd.to_datetime(data.index[train_size+i+look_back], format='%Y-%m-%d') data.loc[date] = [2222222.5] * len(data.columns) data.iloc[-1, 1] = y_test_pred[i, 0] if i == 23: data.to_csv("resultym_predicted.csv", index=True) # 保存预测结果 if i == 46: break 注意,由于我没有完整的数据集和模型,以上代码可能还需要进行一些修改和调整。
以下是使用RNN模型进行气温预测的Python代码示例: python import numpy as np import pandas as pd import matplotlib.pyplot as plt from keras.models import Sequential from keras.layers import Dense, SimpleRNN # 读取数据 data = pd.read_csv('/data/jena_climate_2009_2016.csv', engine='python') # 取出温度数据 temp = data['T (degC)'].values # 数据标准化 mean = temp[:200000].mean() std = temp[:200000].std() temp = (temp - mean) / std # 定义生成时间序列样本的函数 def generator(data, lookback, delay, min_index, max_index, shuffle=False, batch_size=128, step=6): if max_index is None: max_index = len(data) - delay - 1 i = min_index + lookback while True: if shuffle: rows = np.random.randint(min_index + lookback, max_index, size=batch_size) else: if i + batch_size >= max_index: i = min_index + lookback rows = np.arange(i, min(i + batch_size, max_index)) i += len(rows) samples = np.zeros((len(rows), lookback // step, data.shape[-1])) targets = np.zeros((len(rows),)) for j, row in enumerate(rows): indices = range(rows[j] - lookback, rows[j], step) samples[j] = data[indices] targets[j] = data[rows[j] + delay] yield samples, targets # 定义训练集、验证集和测试集的生成器 lookback = 1440 step = 6 delay = 144 batch_size = 128 train_gen = generator(temp, lookback=lookback, delay=delay, min_index=0, max_index=200000, shuffle=True, step=step, batch_size=batch_size) val_gen = generator(temp, lookback=lookback, delay=delay, min_index=200001, max_index=300000, step=step, batch_size=batch_size) test_gen = generator(temp, lookback=lookback, delay=delay, min_index=300001, max_index=None, step=step, batch_size=batch_size) val_steps = (300000 - 200001 - lookback) // batch_size test_steps = (len(temp) - 300001 - lookback) // batch_size # 定义RNN模型 model = Sequential() model.add(SimpleRNN(32, input_shape=(None, temp.shape[-1]))) model.add(Dense(1)) model.compile(optimizer='rmsprop', loss='mae') # 训练模型 history = model.fit_generator(train_gen, steps_per_epoch=500, epochs=20, validation_data=val_gen, validation_steps=val_steps) # 绘制损失曲线 loss = history.history['loss'] val_loss = history.history['val_loss'] epochs = range(1, len(loss) + 1) plt.plot(epochs, loss, 'bo', label='Training loss') plt.plot(epochs, val_loss, 'b', label='Validation loss') plt.title('Training and validation loss') plt.legend() plt.show() # 在测试集上评估模型 test_loss = model.evaluate_generator(test_gen, steps=test_steps) print('test loss:', test_loss) # 预测未来24小时的温度 lookback = 1440 step = 6 delay = 144 batch_size = 128 test_gen = generator(temp, lookback=lookback, delay=delay, min_index=300001, max_index=None, step=step, batch_size=batch_size) test_steps = (len(temp) - 300001 - lookback) // batch_size preds = model.predict_generator(test_gen, steps=test_steps) preds = preds.reshape(-1) preds = preds * std + mean
LSTM (Long Short-Term Memory) 是一种递归神经网络 (RNN) 的变体,常用于处理序列数据的预测任务,包括股票价格预测。在Python中,可以使用各种深度学习框架(如TensorFlow、Keras、PyTorch等)来实现LSTM模型进行股票预测。 下面是一个使用Keras和TensorFlow实现LSTM模型进行股票预测的简单示例: python import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense # 读取股票数据 data = pd.read_csv('stock_data.csv') # 提取收盘价数据并进行归一化处理 close_prices = data['Close'].values.reshape(-1, 1) scaler = MinMaxScaler() normalized_prices = scaler.fit_transform(close_prices) # 划分训练集和测试集 train_size = int(len(normalized_prices) * 0.8) train_data, test_data = normalized_prices[:train_size], normalized_prices[train_size:] # 准备训练数据 def create_dataset(data, lookback): X, y = [], [] for i in range(len(data) - lookback - 1): X.append(data[i:(i + lookback), 0]) y.append(data[i + lookback, 0]) return np.array(X), np.array(y) lookback = 10 X_train, y_train = create_dataset(train_data, lookback) X_test, y_test = create_dataset(test_data, lookback) # 调整输入数据的形状 X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) # 构建LSTM模型 model = Sequential() model.add(LSTM(50, input_shape=
LSTM (Long Short-Term Memory) 是一种递归神经网络 (RNN) 的变体,常用于处理序列数据的预测任务,包括股票价格预测。在Python中,可以使用各种深度学习框架(如TensorFlow、Keras、PyTorch等)来实现LSTM模型进行股票预测。 下面是一个使用Keras和TensorFlow实现LSTM模型进行股票预测的简单示例: python import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense # 读取股票数据 data = pd.read_csv('stock_data.csv') # 提取收盘价数据并进行归一化处理 close_prices = data['Close'].values.reshape(-1, 1) scaler = MinMaxScaler() normalized_prices = scaler.fit_transform(close_prices) # 划分训练集和测试集 train_size = int(len(normalized_prices) * 0.8) train_data, test_data = normalized_prices[:train_size], normalized_prices[train_size:] # 准备训练数据 def create_dataset(data, lookback): X, y = [], [] for i in range(len(data) - lookback - 1): X.append(data[i:(i + lookback), 0]) y.append(data[i + lookback, 0]) return np.array(X), np.array(y) lookback = 10 X_train, y_train = create_dataset(train_data, lookback) X_test, y_test = create_dataset(test_data, lookback) # 调整输入数据的形状 X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) # 构建LSTM模型 model = Sequential() model.add(LSTM(50, input_shape=(lookback, 1))) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') # 训练模型 model.fit(X_train, y_train, epochs=10, batch_size=1) # 在测试集上进行预测 predictions = model.predict(X_test) predictions = scaler.inverse_transform(predictions) # 可视化预测结果 import matplotlib.pyplot as plt plt.plot(scaler.inverse_transform(test_data[lookback+1:]), label='Actual') plt.plot(predictions, label='Predicted') plt.legend() plt.show() 上述代码假设你已经将股票数据保存在stock_data.csv文件中,并且该文件包含一个名为"Close"的列,表示每天的收盘价。你可以根据自己的数据调整代码中的相关参数,并进行适当的修改。这只是一个简单的示例,实际的股票预测可能需要更复杂的模型和特征工程方法。
时序预测是指基于历史数据来预测未来时间点的数值或趋势。在PyTorch中,可以使用神经网络模型进行时序预测。以下是一个简单的PyTorch时序预测的示例代码: python import torch import torch.nn as nn # 准备数据 data = torch.tensor([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]) lookback = 3 input_size = 1 output_size = 1 x = torch.zeros(len(data) - lookback, lookback, input_size) y = torch.zeros(len(data) - lookback, output_size) for i in range(len(data) - lookback): x[i] = data[i:i+lookback].view(-1, 1) y[i] = data[i+lookback:i+lookback+output_size].view(-1, 1) # 定义模型 class LSTM(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(LSTM, self).__init__() self.lstm = nn.LSTM(input_size, hidden_size) self.linear = nn.Linear(hidden_size, output_size) def forward(self, x): output, _ = self.lstm(x) output = self.linear(output[:, -1]) return output model = LSTM(input_size, 16, output_size) # 定义损失函数和优化器 criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.01) # 训练模型 num_epochs = 100 for epoch in range(num_epochs): y_pred = model(x) loss = criterion(y_pred, y) optimizer.zero_grad() loss.backward() optimizer.step() if (epoch+1) % 10 == 0: print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item())) # 预测未来值 with torch.no_grad(): future = 5 pred = data[-lookback:].view(-1, 1) for i in range(future): input = pred[-lookback:].view(1, lookback, input_size) output = model(input) pred = torch.cat((pred, output.view(-1, 1)), dim=0) print('Predicted future values:', pred[lookback:]) 在这个示例中,我们使用了一个LSTM模型进行时序预测。首先,我们将历史数据拆分成输入和输出,然后定义LSTM模型,损失函数和优化器。接下来,我们训练模型并预测未来值。

最新推荐

基于深度学习的电力工控网络异常流量检测技术研究(毕设&课设论文参考).caj

资源说明 【1】资源属于对应项目写的论文,写作规范、逻辑紧密、用语专业严谨,内容丰富饱满,可读性强,很适合对该领域的初学者、工程师、在校师生、毕业生等下载使用。 【2】论文适合学习借鉴参考,为您的类似项目开发或写作提供专业知识介绍及思路。 【3】资源非项目源码,如需项目源码,请私信沟通,不Free。 【4】可用于毕业设计、课程设计,切记完全照抄! 【5】鼓励大家下载后仔细研读,多看、多思考!搞懂里面的知识点及实验内容。欢迎交流学习!

SLAM-使用多波束声纳的机器人水下SLAM导航定位-优质项目实战.zip

SLAM_使用多波束声纳的机器人水下SLAM导航定位_优质项目实战

DAC简介及参考电路PPT学习教案.pptx

DAC简介及参考电路PPT学习教案.pptx

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

OceanBase数据库简介及原理解析

# 1. OceanBase数据库概述 ## 1.1 OceanBase数据库的发展历程 OceanBase数据库是由阿里巴巴集团自主研发的一款分布式关系型数据库系统,起源于阿里集团的业务需求和技术挑战。自2010年开始研发,经过多年的迭代和优化,OceanBase已经成为阿里巴巴集团重要的核心数据库产品之一。在实际的业务场景中,OceanBase已经被广泛应用于金融、电商、物流等各个领域。 ## 1.2 OceanBase数据库的特点和优势 OceanBase数据库具有以下特点和优势: - **分布式架构**:OceanBase采用多副本分布式架构,可以实现高可用和数据容灾。 -

python的pandas读取excel怎么将excel表里的列从1开始而不是0

在 Pandas 中,数据框的列默认从0开始编号,但我们可以通过自定义函数来进行数据列的转换。可以先将读取的数据框列的第一个值设为1,然后对后续列进行递增处理。 以下是示例代码: ```python import pandas as pd # 读取 Excel 文件 df = pd.read_excel('your_excel_file.xlsx') # 定义函数将列从1开始 def reset_column(x): return str(int(x) + 1) # 应用函数到所有列名 df = df.rename(columns=reset_column) # 打印数据框

第三章薪酬水平、薪酬系统的运行与控制.pptx

第三章薪酬水平、薪酬系统的运行与控制.pptx

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依

理解MVC架构:Laravel框架的核心设计

# 1. 第1章 项目立项与概述 ## 1.1 动机 随着互联网的快速发展,Web应用的开发需求不断增加。为了提高开发效率、代码可维护性和团队协作效率,我们决定采用MVC架构来设计我们的Web应用。 ## 1.2 服务器状态 我们的服务器环境采用了LAMP(Linux + Apache + MySQL + PHP)架构,满足了我们Web应用开发的基本需求,但为了更好地支持MVC架构,我们将对服务器进行适当的配置和优化。 ## 1.3 项目立项 经过团队讨论和决定,决定采用Laravel框架来开发我们的Web应用,基于MVC架构进行设计和开发,为此做出了项目立项。 ## 1.4 项目概况

如何将HDFS上的文件读入到Hbase,用java

要将HDFS上的文件读入到HBase,可以使用Java编写MapReduce程序实现,以下是实现步骤: 1. 首先需要创建一个HBase表,可使用HBase Shell或Java API创建; 2. 编写MapReduce程序,其中Map阶段读取HDFS上的文件,将数据转换成Put对象,然后将Put对象写入到HBase表中; 3. 在MapReduce程序中设置HBase表名、列族名、列名等参数; 4. 在程序运行前,需要将HBase相关的jar包和配置文件加入到classpath中; 5. 最后提交MapReduce任务运行即可。 以下是示例代码: ``` Configuration