optimizer = optim.Adam(params_to_update, lr=1e-4)
时间: 2024-04-17 21:29:37 浏览: 117
optimizer = optim.Adam(params_to_update, lr=1e-4) 是创建一个Adam优化器的操作。
Adam是一种常用的优化算法,用于调整神经网络中的参数以最小化训练误差。它基于自适应矩估计(Adaptive Moment Estimation)的思想,结合了动量方法和RMSProp算法,旨在在训练过程中自适应地调整学习率。
在这个操作中,optimizer被初始化为一个Adam优化器对象。它的参数包括params_to_update,即需要更新的模型参数,以及学习率lr。params_to_update通常是指需要进行梯度更新的模型参数,可以通过模型的parameters()方法获取。学习率lr是用来控制参数更新的步长,即每次参数更新的幅度大小。
通过使用Adam优化器,可以根据模型的梯度信息自适应地调整参数,以便更好地拟合训练数据。同时,可以通过调整学习率lr来控制参数更新的速度和稳定性。
相关问题
LDAM损失函数pytorch代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((16, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) 模型部分参数如下:# 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 #记录最高得分 use_ema=True model_ema_decay=0.9998 start_epoch=1 seed=1 seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) # 读取数据集 dataset_train = datasets.ImageFolder('/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/train', transform=transform) dataset_test = datasets.ImageFolder("/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/valid", transform=transform_test)# 导入数据 train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True,drop_last=True) test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False) 帮我用pytorch实现模型在模型训练中使用LDAM损失函数
好的,以下是使用LDAM损失函数训练模型的Pytorch代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torchvision import datasets, transforms
from ldam_loss import LDAMLoss
# 定义模型
class MyModel(nn.Module):
def __init__(self, num_classes):
super(MyModel, self).__init__()
self.num_classes = num_classes
self.features = nn.Sequential(
nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
)
self.classifier = nn.Sequential(
nn.Linear(128 * 4 * 4, 256),
nn.ReLU(inplace=True),
nn.Linear(256, num_classes),
)
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
# 设置超参数
model_lr = 1e-4
BATCH_SIZE = 16
EPOCHS = 50
DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
use_amp = True
use_dp = True
classes = 7
resume = None
CLIP_GRAD = 5.0
Best_ACC = 0
use_ema = True
model_ema_decay = 0.9998
start_epoch = 1
seed = 1
# 设置随机种子
def seed_everything(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
seed_everything(seed)
# 定义数据增强
transform = transforms.Compose([
transforms.Resize(224),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(10),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
transform_test = transforms.Compose([
transforms.Resize(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
# 定义数据集
dataset_train = datasets.ImageFolder('/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/train', transform=transform)
dataset_test = datasets.ImageFolder("/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/valid", transform=transform_test)
# 定义数据加载器
train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True, drop_last=True)
test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False)
# 定义模型及优化器
model = MyModel(num_classes=classes).to(DEVICE)
optimizer = torch.optim.Adam(model.parameters(), lr=model_lr)
# 使用LDAM损失函数
cls_num_list = [dataset_train.targets.count(i) for i in range(classes)]
criterion = LDAMLoss(cls_num_list=cls_num_list, max_m=0.5, weight=None, s=30)
# 训练模型
for epoch in range(start_epoch, EPOCHS+1):
model.train()
for i, (data, target) in enumerate(train_loader):
data, target = data.to(DEVICE), target.to(DEVICE)
mixup_data, mixup_target = mixup_fn(data, target) # 数据增强
optimizer.zero_grad()
output = model(mixup_data)
loss = criterion(output, mixup_target)
if use_dp:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD)
else:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), CLIP_GRAD)
optimizer.step()
if use_ema:
ema_model = ModelEMA(model, decay=model_ema_decay)
ema_model.update(model)
else:
ema_model = None
test_acc = test(model, test_loader, DEVICE)
if test_acc > Best_ACC:
Best_ACC = test_acc
save_checkpoint({
'epoch': epoch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'Best_ACC': Best_ACC,
}, is_best=True)
```
给出基于pytorch强化学习SAC算法对Swimmer-v3训练输出的policy.pth、actor.pth和critic.pth模型的代码,写出如何转化成tensorflow lite,并部署到esp32中
这是一个比较复杂的问题,需要分为几个步骤来完成。
首先,我们需要使用PyTorch实现SAC算法来训练Swimmer-v3环境。这个过程可以参考OpenAI Gym官方文档,具体实现代码如下:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import gym
import numpy as np
import random
# 定义策略网络
class Policy(nn.Module):
def __init__(self, state_dim, action_dim, hidden_dim=256):
super(Policy, self).__init__()
self.fc1 = nn.Linear(state_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, action_dim)
def forward(self, state):
x = torch.relu(self.fc1(state))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
# 定义Q网络
class QNet(nn.Module):
def __init__(self, state_dim, action_dim, hidden_dim=256):
super(QNet, self).__init__()
self.fc1 = nn.Linear(state_dim+action_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, 1)
def forward(self, state, action):
x = torch.cat([state, action], dim=1)
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
# 定义重要性采样函数
def logprob(mu, log_std, action):
var = torch.exp(2*log_std)
logp = -0.5 * torch.sum(torch.pow(action-mu, 2)/var + 2*log_std + np.log(2*np.pi), dim=1)
return logp
# 定义SAC算法
class SAC:
def __init__(self, env, state_dim, action_dim, hidden_dim=256, lr=0.001, gamma=0.99, tau=0.01, alpha=0.2, buffer_size=1000000, batch_size=256, target_entropy=None):
self.env = env
self.state_dim = state_dim
self.action_dim = action_dim
self.hidden_dim = hidden_dim
self.lr = lr
self.gamma = gamma
self.tau = tau
self.alpha = alpha
self.buffer_size = buffer_size
self.batch_size = batch_size
self.target_entropy = -action_dim if target_entropy is None else target_entropy
self.policy = Policy(state_dim, action_dim, hidden_dim).to(device)
self.policy_optimizer = optim.Adam(self.policy.parameters(), lr=lr)
self.q1 = QNet(state_dim, action_dim, hidden_dim).to(device)
self.q2 = QNet(state_dim, action_dim, hidden_dim).to(device)
self.q1_optimizer = optim.Adam(self.q1.parameters(), lr=lr)
self.q2_optimizer = optim.Adam(self.q2.parameters(), lr=lr)
self.value = QNet(state_dim, action_dim, hidden_dim).to(device)
self.value_optimizer = optim.Adam(self.value.parameters(), lr=lr)
self.memory = []
self.steps = 0
self.episodes = 0
def select_action(self, state, test=False):
state = torch.FloatTensor(state).to(device)
with torch.no_grad():
mu = self.policy(state)
log_std = torch.zeros_like(mu)
action = mu + torch.exp(log_std) * torch.randn_like(mu)
action = action.cpu().numpy()
return action if test else np.clip(action, self.env.action_space.low, self.env.action_space.high)
def update(self):
if len(self.memory) < self.batch_size:
return
state, action, reward, next_state, done = self.sample()
state = torch.FloatTensor(state).to(device)
action = torch.FloatTensor(action).to(device)
reward = torch.FloatTensor(reward).unsqueeze(-1).to(device)
next_state = torch.FloatTensor(next_state).to(device)
done = torch.FloatTensor(done).unsqueeze(-1).to(device)
with torch.no_grad():
next_action, next_log_prob = self.policy.sample(next_state)
next_q1 = self.q1(next_state, next_action)
next_q2 = self.q2(next_state, next_action)
next_q = torch.min(next_q1, next_q2) - self.alpha * next_log_prob
target_q = reward + (1-done) * self.gamma * next_q
q1 = self.q1(state, action)
q2 = self.q2(state, action)
value = self.value(state)
q1_loss = nn.MSELoss()(q1, target_q.detach())
q2_loss = nn.MSELoss()(q2, target_q.detach())
value_loss = nn.MSELoss()(value, torch.min(q1, q2).detach())
self.q1_optimizer.zero_grad()
q1_loss.backward()
self.q1_optimizer.step()
self.q2_optimizer.zero_grad()
q2_loss.backward()
self.q2_optimizer.step()
self.value_optimizer.zero_grad()
value_loss.backward()
self.value_optimizer.step()
with torch.no_grad():
new_action, new_log_prob = self.policy.sample(state)
q1_new = self.q1(state, new_action)
q2_new = self.q2(state, new_action)
q_new = torch.min(q1_new, q2_new) - self.alpha * new_log_prob
policy_loss = (self.alpha * new_log_prob - q_new).mean()
self.policy_optimizer.zero_grad()
policy_loss.backward()
self.policy_optimizer.step()
self.alpha = max(0.01, self.alpha - 1e-4)
for target_param, param in zip(self.value.parameters(), self.q1.parameters()):
target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
for target_param, param in zip(self.value.parameters(), self.q2.parameters()):
target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
self.steps += self.batch_size
if done.any():
self.episodes += done.sum().item()
def sample(self):
indices = np.random.randint(0, len(self.memory), size=self.batch_size)
state, action, reward, next_state, done = zip(*[self.memory[idx] for idx in indices])
return state, action, reward, next_state, done
def run(self, episodes=1000, render=False):
for episode in range(episodes):
state = self.env.reset()
episode_reward = 0
done = False
while not done:
if render:
self.env.render()
action = self.select_action(state)
next_state, reward, done, _ = self.env.step(action)
self.memory.append((state, action, reward, next_state, done))
self.update()
state = next_state
episode_reward += reward
print(f"Episode {episode}, Reward {episode_reward}")
self.save_model()
def save_model(self, path="./"):
torch.save(self.policy.state_dict(), path + "policy.pth")
torch.save(self.q1.state_dict(), path + "q1.pth")
torch.save(self.q2.state_dict(), path + "q2.pth")
def load_model(self, path="./"):
self.policy.load_state_dict(torch.load(path + "policy.pth"))
self.q1.load_state_dict(torch.load(path + "q1.pth"))
self.q2.load_state_dict(torch.load(path + "q2.pth"))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
env = gym.make("Swimmer-v3")
sac = SAC(env, env.observation_space.shape[0], env.action_space.shape[0])
sac.run()
```
接下来,我们需要将训练好的模型导出为TensorFlow Lite模型。为此,我们需要使用ONNX将PyTorch模型转换为ONNX格式,然后使用TensorFlow Lite Converter将ONNX模型转换为TensorFlow Lite模型。具体实现代码如下:
```python
import onnx
from onnx_tf.backend import prepare
import tensorflow as tf
from tensorflow import lite
# 将PyTorch模型转换为ONNX格式
model = SAC(env, env.observation_space.shape[0], env.action_space.shape[0])
model.load_model()
dummy_input = torch.randn(1, env.observation_space.shape[0])
torch.onnx.export(model.policy, dummy_input, "policy.onnx", export_params=True)
# 将ONNX模型转换为TensorFlow Lite模型
onnx_model = onnx.load("policy.onnx")
tf_model = prepare(onnx_model)
tflite_model = lite.TFLiteConverter.from_session(tf_model.session).convert()
# 保存TensorFlow Lite模型
with open("policy.tflite", "wb") as f:
f.write(tflite_model)
```
最后,我们需要将TensorFlow Lite模型部署到ESP32中。首先,需要安装ESP-IDF开发环境。然后,我们可以使用ESP32的TensorFlow Lite for Microcontrollers库来加载和运行模型。具体实现代码如下:
```c
#include "tensorflow/lite/micro/micro_interpreter.h"
#include "tensorflow/lite/micro/kernels/all_ops_resolver.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/version.h"
// 定义模型文件名
#define MODEL_FILENAME "/path/to/policy.tflite"
// 定义输入输出张量的数量和形状
#define INPUT_TENSOR_NUM 1
#define INPUT_TENSOR_HEIGHT 1
#define INPUT_TENSOR_WIDTH 8
#define OUTPUT_TENSOR_NUM 1
#define OUTPUT_TENSOR_HEIGHT 1
#define OUTPUT_TENSOR_WIDTH 2
int main()
{
// 加载模型
const tflite::Model* model = tflite::GetModel(MODEL_FILENAME);
if (model == nullptr) {
return -1;
}
// 创建解释器和张量分配器
static tflite::MicroInterpreter interpreter(model, tflite::AllOpsResolver(), nullptr, nullptr);
interpreter.AllocateTensors();
// 获取输入输出张量
TfLiteTensor* input = interpreter.input(0);
input->dims->data[0] = INPUT_TENSOR_HEIGHT;
input->dims->data[1] = INPUT_TENSOR_WIDTH;
input->type = kTfLiteFloat32;
TfLiteTensor* output = interpreter.output(0);
output->dims->data[0] = OUTPUT_TENSOR_HEIGHT;
output->dims->data[1] = OUTPUT_TENSOR_WIDTH;
output->type = kTfLiteFloat32;
// 运行模型
float input_data[INPUT_TENSOR_HEIGHT][INPUT_TENSOR_WIDTH] = {0.0};
float output_data[OUTPUT_TENSOR_HEIGHT][OUTPUT_TENSOR_WIDTH] = {0.0};
input->data.f = reinterpret_cast<float*>(input_data);
output->data.f = reinterpret_cast<float*>(output_data);
interpreter.Invoke();
// 打印输出结果
printf("Output: %f %f\n", output_data[0][0], output_data[0][1]);
return 0;
}
```
需要注意的是,ESP32的TensorFlow Lite for Microcontrollers库只支持一小部分的TensorFlow Lite操作,因此在将模型转换为TensorFlow Lite格式时需要使用支持的操作。如果模型中包含不支持的操作,可以尝试使用TensorFlow Lite for Microcontrollers的自定义操作接口来实现。
阅读全文