Pyspark程序与spark交互流程
时间: 2024-01-06 17:25:19 浏览: 65
Pyspark程序与Spark的交互流程如下:
1. 导入必要的模块和类:
```python
from pyspark.sql import SparkSession
```
2. 创建SparkSession对象:
```python
spark = SparkSession.builder \
.appName("SparkApp") \
.getOrCreate()
```
3. 使用SparkSession对象创建DataFrame或RDD:
```python
# 创建DataFrame
df = spark.read.csv("data.csv", header=True, inferSchema=True)
# 创建RDD
rdd = spark.sparkContext.parallelize([1, 2, 3, 4, 5])
```
4. 对DataFrame或RDD进行操作和转换:
```python
# DataFrame操作
df.show()
df.filter(df.age > 30).show()
# RDD操作
rdd.map(lambda x: x * 2).collect()
rdd.filter(lambda x: x % 2 == 0).collect()
```
5. 执行Spark作业:
```python
# DataFrame作业
result = df.groupBy("name").count().collect()
# RDD作业
result = rdd.reduce(lambda x, y: x + y)
```
6. 关闭SparkSession对象:
```python
spark.stop()
```