BiFPN pytorch代码
时间: 2024-05-29 15:07:25 浏览: 246
pytorch测试代码
BiFPN是一种用于目标检测中的特征融合方法,它可以将不同尺度的特征图融合为更准确的特征图。在PyTorch中实现BiFPN需要进行如下步骤:
1.定义BiFPN层:BiFPN层的主要目的是将不同层级的特征图进行融合,可以参考如下代码实现:
```python
class BiFPNLayer(nn.Module):
def __init__(self, channels, level):
super(BiFPNLayer, self).__init__()
self.level = level
# 定义上采样层
self.up = nn.Upsample(scale_factor=2, mode='nearest')
# 定义下采样层
self.down = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
# 定义4个卷积层
self.conv1 = nn.Conv2d(channels, channels, kernel_size=1, bias=False)
self.conv2 = nn.Conv2d(channels, channels, kernel_size=1, bias=False)
self.conv3 = nn.Conv2d(channels, channels, kernel_size=1, bias=False)
self.conv4 = nn.Conv2d(channels, channels, kernel_size=1, bias=False)
# 定义归一化层
self.bn1 = nn.BatchNorm2d(channels)
self.bn2 = nn.BatchNorm2d(channels)
self.bn3 = nn.BatchNorm2d(channels)
self.bn4 = nn.BatchNorm2d(channels)
def forward(self, inputs):
x1, x2, x3, x4 = inputs
# 上采样和下采样
if self.level > 0:
x1 = x1 + self.up(x2)
x2 = x2 + self.down(x1)
if self.level > 1:
x2 = x2 + self.up(x3)
x3 = x3 + self.down(x2)
if self.level > 2:
x3 = x3 + self.up(x4)
x4 = x4 + self.down(x3)
# 特征融合
x4 = self.bn1(self.conv1(x4))
x3 = self.bn2(self.conv2(x3)) + F.interpolate(x4, scale_factor=0.5, mode='nearest')
x2 = self.bn3(self.conv3(x2)) + F.interpolate(x3, scale_factor=0.5, mode='nearest')
x1 = self.bn4(self.conv4(x1)) + F.interpolate(x2, scale_factor=0.5, mode='nearest')
return [x1, x2, x3, x4]
```
2.定义整个BiFPN模型:根据所需的BiFPN层数量定义整个模型,可以参考如下代码实现:
```python
class BiFPN(nn.Module):
def __init__(self, channels, num_layers):
super(BiFPN, self).__init__()
self.layers = nn.ModuleList()
for i in range(num_layers):
self.layers.append(BiFPNLayer(channels, i))
def forward(self, inputs):
out = inputs
for layer in self.layers:
out = layer(out)
return out
```
3.调用BiFPN模型:在训练或者推理时,调用定义好的BiFPN模型即可,可以参考如下代码实现:
```python
inputs = [torch.randn(1, 64, 224 // (2 ** i), 224 // (2 ** i))) for i in range(4)]
bifpn_model = BiFPN(channels=64, num_layers=6)
outputs = bifpn_model(inputs)
```
以上就是使用PyTorch实现BiFPN的主要步骤。
阅读全文