BiFPN pytorch
时间: 2023-11-06 15:02:21 浏览: 115
BiFPN是Bidirectional Feature Pyramid Network的缩写,是一种加权双向特征金字塔网络。它在目标检测任务中被广泛应用,特别是在EfficientDet模型中。BiFPN通过自顶向下和自低向上的方式,有效地整合不同层级的特征信息,并通过加权联合来提高检测结果的准确性和鲁棒性。PyTorch中有一个实现了BiFPN的项目,你可以在以下地址找到:https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch。
相关问题
BiFPN pytorch代码
BiFPN是一种用于目标检测中的特征融合方法,它可以将不同尺度的特征图融合为更准确的特征图。在PyTorch中实现BiFPN需要进行如下步骤:
1.定义BiFPN层:BiFPN层的主要目的是将不同层级的特征图进行融合,可以参考如下代码实现:
```python
class BiFPNLayer(nn.Module):
def __init__(self, channels, level):
super(BiFPNLayer, self).__init__()
self.level = level
# 定义上采样层
self.up = nn.Upsample(scale_factor=2, mode='nearest')
# 定义下采样层
self.down = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
# 定义4个卷积层
self.conv1 = nn.Conv2d(channels, channels, kernel_size=1, bias=False)
self.conv2 = nn.Conv2d(channels, channels, kernel_size=1, bias=False)
self.conv3 = nn.Conv2d(channels, channels, kernel_size=1, bias=False)
self.conv4 = nn.Conv2d(channels, channels, kernel_size=1, bias=False)
# 定义归一化层
self.bn1 = nn.BatchNorm2d(channels)
self.bn2 = nn.BatchNorm2d(channels)
self.bn3 = nn.BatchNorm2d(channels)
self.bn4 = nn.BatchNorm2d(channels)
def forward(self, inputs):
x1, x2, x3, x4 = inputs
# 上采样和下采样
if self.level > 0:
x1 = x1 + self.up(x2)
x2 = x2 + self.down(x1)
if self.level > 1:
x2 = x2 + self.up(x3)
x3 = x3 + self.down(x2)
if self.level > 2:
x3 = x3 + self.up(x4)
x4 = x4 + self.down(x3)
# 特征融合
x4 = self.bn1(self.conv1(x4))
x3 = self.bn2(self.conv2(x3)) + F.interpolate(x4, scale_factor=0.5, mode='nearest')
x2 = self.bn3(self.conv3(x2)) + F.interpolate(x3, scale_factor=0.5, mode='nearest')
x1 = self.bn4(self.conv4(x1)) + F.interpolate(x2, scale_factor=0.5, mode='nearest')
return [x1, x2, x3, x4]
```
2.定义整个BiFPN模型:根据所需的BiFPN层数量定义整个模型,可以参考如下代码实现:
```python
class BiFPN(nn.Module):
def __init__(self, channels, num_layers):
super(BiFPN, self).__init__()
self.layers = nn.ModuleList()
for i in range(num_layers):
self.layers.append(BiFPNLayer(channels, i))
def forward(self, inputs):
out = inputs
for layer in self.layers:
out = layer(out)
return out
```
3.调用BiFPN模型:在训练或者推理时,调用定义好的BiFPN模型即可,可以参考如下代码实现:
```python
inputs = [torch.randn(1, 64, 224 // (2 ** i), 224 // (2 ** i))) for i in range(4)]
bifpn_model = BiFPN(channels=64, num_layers=6)
outputs = bifpn_model(inputs)
```
以上就是使用PyTorch实现BiFPN的主要步骤。
bifpn代码pytorch版本
BiFPN(Bidirectional Feature Pyramid Network)是一种用于目标检测的网络结构,其最初由Google在2019年提出。其主要特点是可以自适应地融合不同层级的特征图,同时考虑到了信息的上下文关系。BiFPN模块通常被嵌入到目标检测网络中,以提高检测性能。
以下是BiFPN代码的PyTorch实现版本的示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class BiFPNLayer(nn.Module):
def __init__(self, channels):
super(BiFPNLayer, self).__init__()
self.conv6_up = nn.Conv2d(channels, channels, kernel_size=1, stride=1, padding=0)
self.conv5_up = nn.Conv2d(channels, channels, kernel_size=1, stride=1, padding=0)
self.conv4_up = nn.Conv2d(channels, channels, kernel_size=1, stride=1, padding=0)
self.conv3_up = nn.Conv2d(channels, channels, kernel_size=1, stride=1, padding=0)
self.conv4_down = nn.Conv2d(channels, channels, kernel_size=1, stride=1, padding=0)
self.conv5_down = nn.Conv2d(channels, channels, kernel_size=1, stride=1, padding=0)
self.conv6_down = nn.Conv2d(channels, channels, kernel_size=1, stride=1, padding=0)
self.conv7_down = nn.Conv2d(channels, channels, kernel_size=1, stride=1, padding=0)
self.p6_upsample = nn.Upsample(scale_factor=2.0, mode='nearest')
self.p5_upsample = nn.Upsample(scale_factor=2.0, mode='nearest')
self.p4_upsample = nn.Upsample(scale_factor=2.0, mode='nearest')
self.p3_upsample = nn.Upsample(scale_factor=2.0, mode='nearest')
self.p4_downsample = nn.MaxPool2d(kernel_size=2, stride=2)
self.p5_downsample = nn.MaxPool2d(kernel_size=2, stride=2)
self.p6_downsample = nn.MaxPool2d(kernel_size=2, stride=2)
self.relu = nn.ReLU()
def forward(self, p3_in, p4_in, p5_in, p6_in):
# Bottom-up pathway
p6_td = self.conv6_up(p6_in)
p5_td = self.conv5_up(p5_in) + F.interpolate(p6_td, scale_factor=2.0)
p4_td = self.conv4_up(p4_in) + F.interpolate(p5_td, scale_factor=2.0)
p3_out = self.conv3_up(p3_in) + F.interpolate(p4_td, scale_factor=2.0)
# Top-down pathway
p4_out = self.conv4_down(p4_in) + F.interpolate(p3_out, scale_factor=0.5)
p5_out = self.conv5_down(p5_in) + F.interpolate(p4_out, scale_factor=0.5)
p6_out = self.conv6_down(p6_in) + F.interpolate(p5_out, scale_factor=0.5)
p7_out = self.conv7_down(p6_out)
# Fusion
p6_td = F.interpolate(p6_td, size=p7_out.shape[-2:]) + p7_out
p5_td = F.interpolate(p5_td, size=p6_td.shape[-2:]) + self.p6_upsample(p6_td)
p4_td = F.interpolate(p4_td, size=p5_td.shape[-2:]) + self.p5_upsample(p5_td)
p3_out = F.interpolate(p3_out, size=p4_td.shape[-2:]) + self.p4_upsample(p4_td)
p4_out = self.relu(self.conv4_down(p4_out) + self.p4_downsample(p3_out))
p5_out = self.relu(self.conv5_down(p5_out) + self.p5_downsample(p4_out))
p6_out = self.relu(self.conv6_down(p6_out) + self.p6_downsample(p5_out))
return p3_out, p4_out, p5_out, p6_out
```
阅读全文