贝叶斯线性回归 matlab代码
时间: 2024-05-20 16:08:38 浏览: 228
基于贝叶斯线性回归(bayesian)的数据回归预测,多变量输入模型(Matlab完整源码和数据)
5星 · 资源好评率100%
贝叶斯线性回归(Bayesian Linear Regression)是一种基于贝叶斯定理的统计学习方法,它可以用来预测连续变量。相较于普通的线性回归,贝叶斯线性回归可以对权重进行正则化,从而防止过拟合。在Matlab中,可以使用BayesianLinearRegression对象进行贝叶斯线性回归。以下是一个简单的示例代码:
```
% 准备数据
x = linspace(-5,5,100)';
y = x.^2 + 0.1*randn(size(x));
% 构建模型
model = BayesianLinearRegression;
% 训练模型
model = fit(model,x,y);
% 预测
xtest = linspace(-6,6,200)';
ypred = predict(model,xtest);
% 绘制结果
figure;
plot(x,y,'o');
hold on;
plot(xtest,ypred);
xlabel('x');
ylabel('y');
legend('训练数据','预测结果');
```
以上代码首先准备了一组数据,然后使用BayesianLinearRegression对象构建了一个贝叶斯线性回归模型,并用fit函数对模型进行训练。接着,使用predict函数对新的数据进行预测,并将结果绘制出来。
阅读全文