用邻接矩阵表示无向带权图prim c++
时间: 2023-11-26 21:01:26 浏览: 197
无向带权图可以用邻接矩阵来表示,而Prim算法是一种用来寻找最小生成树的算法。首先,我们需要构建一个二维数组作为邻接矩阵来表示图的边的权重。假设该无向带权图有n个顶点,我们可以构建一个n*n的矩阵来表示图中顶点之间的边的权重。
接着,我们可以利用Prim算法来找出该图的最小生成树。具体做法是从任意一个顶点开始,将其加入到最小生成树中,并标记为已访问。然后依次找出与已访问的顶点相连且权重最小的边所连接的顶点,将其加入到最小生成树中,并标记为已访问。
重复上述步骤直到所有的顶点都被访问过,即可得到该图的最小生成树。最小生成树的邻接矩阵就是Prim算法中每一步都选取的顶点与其连接的边所构成的矩阵。
总的来说,用邻接矩阵表示无向带权图prim c 就是利用二维数组来表示图的边的权重,然后利用Prim算法来寻找最小生成树,最后得到最小生成树的邻接矩阵来表示整个图的结构。
相关问题
用c++ 给出无向网的Prim算法和Kruskal算法的代码
在C++中,Prim算法和Kruskal算法用于求解最小生成树的问题。这里我会提供简化的伪代码以及基本的C++实现,实际项目中可能需要优化处理大规模数据。
### Prim算法(基于邻接矩阵)
```cpp
#include <vector>
#include <set>
// 边结构体
struct Edge {
int src, dest, weight;
};
class Graph {
public:
// 添加边和获取邻接矩阵
void addEdge(int src, int dest, int weight);
std::vector<int> prim();
private:
std::vector<std::vector<int>> adjMatrix; // 邻接矩阵存储权重
std::set<int> visited; // 记录已访问节点
};
void Graph::addEdge(int src, int dest, int weight) {
adjMatrix[src][dest] = weight;
adjMatrix[dest][src] = weight;
}
std::vector<int> Graph::prim() {
// 初始化最小生成树和集合
std::vector<int> minSet(adjMatrix.size(), INT_MAX), MST = {0};
std::set<int> MST_set;
// 将第一顶点加入MST
minSet[0] = 0;
MST_set.insert(0);
for (int i = 1; i < adjMatrix.size(); ++i) {
int u = -1;
for (int v : MST_set) {
if (adjMatrix[v][i] && minSet[u] > adjMatrix[v][i]) {
u = v;
}
}
if (u != -1) {
minSet[i] = adjMatrix[u][i];
MST.push_back(i);
MST_set.insert(i);
visited.insert(u);
}
}
return MST;
}
```
### Kruskal算法(基于并查集)
```cpp
#include <vector>
#include <set>
#include <algorithm>
struct Edge {
int src, dest, weight;
};
class UnionFind {
public:
void makeSet(int node);
int findSet(int node);
void unionSets(int x, int y);
private:
std::vector<int> parent;
std::vector<int> rank;
};
// ... 实现UnionFind类的其他方法
std::vector<Edge> kruskal(Graph& graph) {
std::vector<Edge> edges(graph.getEdges()); // 获取所有边
sort(edges.begin(), edges.end(), [](const Edge& a, const Edge& b) { return a.weight < b.weight; });
UnionFind uf(graph.getNumVertices());
std::vector<Edge> MST;
for (const auto& edge : edges) {
int u = uf.findSet(edge.src);
int v = uf.findSet(edge.dest);
if (u != v) {
MST.push_back(edge);
uf.unionSets(u, v);
}
if (uf.getNumSets() == graph.getNumVertices() - 1) break; // 找到最小生成树
}
return MST;
}
```
利用邻接矩阵表示无向图,请实现prim算法
Prim's algorithm, also known as the Prim's minimum spanning tree (MST) algorithm, is a popular algorithm for finding the minimum spanning tree of an undirected weighted graph represented using an adjacency matrix. Here's how you can implement it in C++:
```cpp
#include <iostream>
#include <vector>
#include <climits>
using namespace std;
// Function to find the minimum edge weight
int min_edge(vector<vector<int>>& adj, vector<bool>& visited, int node, int& min_weight) {
int min_val = INT_MAX;
int min_index = -1;
for (int i = 0; i < adj[node].size(); i++) {
if (!visited[i] && adj[node][i] < min_val) {
min_val = adj[node][i];
min_index = i;
}
}
min_weight = min_weight ? min_weight : min_val;
return min_index;
}
// Function to perform Prim's Algorithm
vector<int> prim_mst(vector<vector<int>>& adj, int V) {
vector<bool> visited(V, false);
vector<int> parent(V, -1); // Parent array
priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq; // Min heap for edges
// Add the first vertex with weight 0
visited[0] = true;
pq.push({0, 0});
while (!pq.empty()) {
int u = pq.top().second;
pq.pop();
// Find the minimum edge from the current node
int min_weight = INT_MAX;
int v = min_edge(adj, visited, u, min_weight);
if (min_weight != INT_MAX) {
// If found, mark the node as visited and update the parent
visited[v] = true;
parent[v] = u;
// Relax the adjacent vertices
for (int i = 0; i < adj[v].size(); i++) {
if (!visited[i] && adj[u][i] < INT_MAX) {
pq.push({adj[u][i], i});
}
}
}
}
return parent;
}
int main() {
int V, E;
cout << "Enter number of vertices: ";
cin >> V;
cout << "Enter number of edges: ";
cin >> E;
vector<vector<int>> adj(V, vector<int>(V, INT_MAX)); // Initialize adjacency matrix with infinite weights
// Read the edges and their weights here
prim_mst(adj, V); // Call the function
// Print or use the parent array to reconstruct the MST
return 0;
}
```
In this code, we create a `prim_mst` function that takes an adjacency matrix (`adj`) and the number of vertices (`V`). It uses a priority queue to keep track of the smallest edge weights and keeps a boolean array `visited` to mark which nodes are already included in the MST.
To use this implementation, you'll need to input the edges and their weights into the adjacency matrix before calling the `prim_mst` function. The returned `parent` array will then contain the parent-child relationships for each node in the minimum spanning tree.
阅读全文