python开放性案例分析题
时间: 2025-01-06 21:46:56 浏览: 4
### Python 开放性案例分析示例
#### 数据科学中的客户流失预测
通过使用Python进行数据预处理、特征工程以及机器学习建模来预测电信行业客户的流失情况。此项目不仅涉及基础的数据探索和可视化,还包括构建分类器并评估其性能。
```python
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, confusion_matrix
# 加载数据集
data = pd.read_csv('customer_churn.csv')
# 数据清洗与准备
X = data.drop(['Churn'], axis=1)
y = data['Churn']
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# 划分训练集测试集
X_train, X_test, y_train, y_test = train_test_split(
X_scaled, y, test_size=0.2, random_state=42)
# 构建随机森林模型
clf = RandomForestClassifier(n_estimators=100, random_state=42)
clf.fit(X_train, y_train)
# 测试模型准确性
predictions = clf.predict(X_test)
print(confusion_matrix(y_test, predictions))
print(classification_report(y_test, predictions))
```
#### 社交媒体情感分析
利用自然语言处理技术对社交媒体上的评论或帖子执行情感倾向度量,帮助理解公众对于特定话题的态度变化趋势。这通常涉及到文本清理、词向量化及应用监督式学习方法完成最终的情感分类任务。
```python
import re
import nltk
from nltk.corpus import stopwords
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
nltk.download('stopwords')
stop_words = set(stopwords.words('english'))
def clean_text(text):
text = re.sub(r'\W', ' ', str(text)) # 去除非字母字符
text = text.lower().split() # 转换成小写并分割成单词列表
text = [word for word in text if not word in stop_words] # 移除停用词
return " ".join(text)
# 准备数据...
comments_df = ... # 获取包含评论的数据框
cleaned_comments = comments_df["comment"].apply(clean_text)
vectorizer = CountVectorizer(max_features=1500)
X = vectorizer.fit_transform(cleaned_comments).toarray()
# 训练朴素贝叶斯分类器...
classifier = MultinomialNB(alpha=0.1)
classifier.fit(X_train, y_train)
predicted_sentiments = classifier.predict(X_test)
```
阅读全文